TRAJECTORY PLANNING METHOD, COMPUTER-READABLE STORAGE MEDIUM, AND ROBOT

    公开(公告)号:US20230359207A1

    公开(公告)日:2023-11-09

    申请号:US18222448

    申请日:2023-07-16

    CPC classification number: G05D1/0212 B25J11/00 B25J9/10

    Abstract: A trajectory planning method, a computer-readable storage medium, and a robot are provided. The method includes: constructing a phase variable of a trajectory planning of a robot, where the phase variable is a function of two position components of a torso of the robot on a horizontal plane; and performing, using the phase variable replacing a time variable, the trajectory planning on a swinging leg of the robot in each preset coordinate axis direction. In this manner, the robot can no longer continue to follow the established trajectory after being disturbed by the environment, but make state adjustments according to the disturbance received to offset the impact of the disturbance, thereby maintaining walking stability and avoiding the problem of early or late landing of the swinging leg.

    ROBOT STABILITY CONTROL METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230191604A1

    公开(公告)日:2023-06-22

    申请号:US18071462

    申请日:2022-11-29

    CPC classification number: B25J9/1664 B25J9/1605 G05B19/4155 G05B2219/50391

    Abstract: A robot stability control method includes: obtaining a desired zero moment point (ZMP) and a fed-back actual ZMP of a robot at a current moment; based on a ZMP tracking control model, the desired ZMP and the actual ZMP, calculating a desired value of a motion state of a center of mass of the robot at the current moment, wherein the desired value of the motion state of the center of mass comprises a correction amount of the position of the center of mass; based on a spring-mass-damping-acceleration model and the desired value of the motion state of the center of mass, calculating a lead control input amount for the correction amount of the position of the center of mass; and controlling motion of the robot according to the lead control input amount and a planned value of the position of the center of mass at the current moment.

    REDUNDANT ROBOT JOINT ACCELERATION PLANNING METHOD, REDUNDANT ROBOT USING THE SAME, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20230101489A1

    公开(公告)日:2023-03-30

    申请号:US17553758

    申请日:2021-12-16

    Abstract: A joint acceleration planning method, a redundant robot using the same, and a computer readable storage medium are provided. The method includes: obtaining an optimization objective function, a joint acceleration inequation constraint function and a joint acceleration equation constraint function corresponding to the optimization target from a quadratic programming function library, where the optimization objective function is an objective function obtained based on the upper and lower limits of the optimization target and a Euclidean distance algorithm; and obtaining a joint acceleration planning result by performing a quadratic optimization solving on a joint acceleration of each of the target joints of the robot at time k according to the end Cartesian space speed at time k+1, the joint parameter set of the target joints of the robot at time k, the sampling period, the optimization objective function, the joint acceleration inequation constraint function, and the joint acceleration equation constraint function.

    Gait planning method, computer-readable storage medium and robot

    公开(公告)号:US11599118B2

    公开(公告)日:2023-03-07

    申请号:US17137429

    申请日:2020-12-30

    Abstract: A gait planning method includes: performing a gait planning in each center of mass (CoM) timing period of the robot based on a variable-height linear inverted pendulum model, which includes: acquiring a first step length and a second step length at a beginning of each CoM timing period; calculating a first height reduction amplitude and a first fluctuation amplitude of the CoM of the robot according to the first step length; calculating a second height reduction amplitude and a second fluctuation amplitude of the CoM of the robot according to the second step length; and performing a planning to the height of the CoM of the robot in the current CoM timing period, based on the first height reduction amplitude, the first fluctuation amplitude, the second height reduction amplitude, and the second fluctuation amplitude.

    FOOT-WAIST COORDINATED GAIT PLANNING METHOD AND APPARATUS AND ROBOT USING THE SAME

    公开(公告)号:US20210162595A1

    公开(公告)日:2021-06-03

    申请号:US16932872

    申请日:2020-07-20

    Abstract: The present disclosure provides a foot-waist coordinated gait planning method and an apparatus and a robot using the same. The method includes: obtaining an orientation of each foot of the legged robot, and calculating a positional compensation amount of each ankle of the legged robot based on the orientation of the foot; obtaining an orientation of a waist of the legged robot, and calculating a positional compensation amount of each hip of the legged robot based on the orientation of the waist; calculating a hip-ankle positional vector of the legged robot; compensating the hip-ankle positional vector based on the positional compensation amount of the ankle and the positional compensation amount of the hip to obtain the compensated hip-ankle positional vector; and performing an inverse kinematics analysis on the compensated hip-ankle positional vector to obtain joint angles of the legged robot.

    ROBOT GAIT PLANNING METHOD AND ROBOT WITH THE SAME

    公开(公告)号:US20200156721A1

    公开(公告)日:2020-05-21

    申请号:US16452532

    申请日:2019-06-26

    Abstract: The present disclosure provides a robot gait planning method and a robot with the same. The method includes: obtaining, through the sensor set, force information of feel of the robot under a force applied by a target object; calculating coordinates of zero moment points of the feet of the robot with respect to a centroid of a body of the robot based on the force information; and determining a gait planning result for the robot based on the coordinates of the zero moment points with respect to the centroid of the body. The present disclosure is capable of converting the force of the target object to the zero moment points, and using the zero moment points to perform the gait planning, so that the robot follows the target object in the case that the robot is subjected to a force of the target object.

    Trajectory planning method, computer-readable storage medium, and robot

    公开(公告)号:US12292738B2

    公开(公告)日:2025-05-06

    申请号:US18222448

    申请日:2023-07-16

    Abstract: A trajectory planning method, a computer-readable storage medium, and a robot are provided. The method includes: constructing a phase variable of a trajectory planning of a robot, where the phase variable is a function of two position components of a torso of the robot on a horizontal plane; and performing, using the phase variable replacing a time variable, the trajectory planning on a swinging leg of the robot in each preset coordinate axis direction. In this manner, the robot can no longer continue to follow the established trajectory after being disturbed by the environment, but make state adjustments according to the disturbance received to offset the impact of the disturbance, thereby maintaining walking stability and avoiding the problem of early or late landing of the swinging leg.

Patent Agency Ranking