METHOD FOR CONTROLLING ROBOT, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230373089A1

    公开(公告)日:2023-11-23

    申请号:US18230620

    申请日:2023-08-05

    CPC classification number: B25J9/1661

    Abstract: A method for controlling a robot includes: obtaining current motion state information of the robot and desired motion trajectory information corresponding to a target task; determining task execution coefficient matrices corresponding to the robot performing the target task according to the desired motion trajectory information and the motion state information; constructing matching dynamic constraints for task-driven parameters of the robot according to the desired motion trajectory information and the motion state information; constructing matching parameter distribution constraints for the task-driven parameters according to the motion state information and body action safety constraints corresponding to the target task; solving a pre-stored task execution loss function by using the task execution coefficient matrices to obtain the target-driven parameters satisfying the dynamic constraints and the parameter distribution constraints; and controlling operation state of each joint end effector of the robot according to the target-driven parameters.

    TRAJECTORY PLANNING METHOD, COMPUTER-READABLE STORAGE MEDIUM, AND ROBOT

    公开(公告)号:US20230359207A1

    公开(公告)日:2023-11-09

    申请号:US18222448

    申请日:2023-07-16

    CPC classification number: G05D1/0212 B25J11/00 B25J9/10

    Abstract: A trajectory planning method, a computer-readable storage medium, and a robot are provided. The method includes: constructing a phase variable of a trajectory planning of a robot, where the phase variable is a function of two position components of a torso of the robot on a horizontal plane; and performing, using the phase variable replacing a time variable, the trajectory planning on a swinging leg of the robot in each preset coordinate axis direction. In this manner, the robot can no longer continue to follow the established trajectory after being disturbed by the environment, but make state adjustments according to the disturbance received to offset the impact of the disturbance, thereby maintaining walking stability and avoiding the problem of early or late landing of the swinging leg.

    ROBOT STABILITY CONTROL METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230191604A1

    公开(公告)日:2023-06-22

    申请号:US18071462

    申请日:2022-11-29

    CPC classification number: B25J9/1664 B25J9/1605 G05B19/4155 G05B2219/50391

    Abstract: A robot stability control method includes: obtaining a desired zero moment point (ZMP) and a fed-back actual ZMP of a robot at a current moment; based on a ZMP tracking control model, the desired ZMP and the actual ZMP, calculating a desired value of a motion state of a center of mass of the robot at the current moment, wherein the desired value of the motion state of the center of mass comprises a correction amount of the position of the center of mass; based on a spring-mass-damping-acceleration model and the desired value of the motion state of the center of mass, calculating a lead control input amount for the correction amount of the position of the center of mass; and controlling motion of the robot according to the lead control input amount and a planned value of the position of the center of mass at the current moment.

    ROBOT CONTROL METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230130977A1

    公开(公告)日:2023-04-27

    申请号:US18089614

    申请日:2022-12-28

    Abstract: A method for controlling a robot comprising an end effector includes: establishing at steady state between the end effector and a working surface through a preset impedance control mechanism, and adjusting a contact force between the end effector and the working surface according to a preset desired force; obtaining a contact torque generated by the contact force; controlling the end effector to rotate according to the contact torque until a pose of the end effector is consistent with a pose of the working surface; and controlling the end effector to move tangentially along the working surface.

    REDUNDANT ROBOT JOINT ACCELERATION PLANNING METHOD, REDUNDANT ROBOT USING THE SAME, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20230101489A1

    公开(公告)日:2023-03-30

    申请号:US17553758

    申请日:2021-12-16

    Abstract: A joint acceleration planning method, a redundant robot using the same, and a computer readable storage medium are provided. The method includes: obtaining an optimization objective function, a joint acceleration inequation constraint function and a joint acceleration equation constraint function corresponding to the optimization target from a quadratic programming function library, where the optimization objective function is an objective function obtained based on the upper and lower limits of the optimization target and a Euclidean distance algorithm; and obtaining a joint acceleration planning result by performing a quadratic optimization solving on a joint acceleration of each of the target joints of the robot at time k according to the end Cartesian space speed at time k+1, the joint parameter set of the target joints of the robot at time k, the sampling period, the optimization objective function, the joint acceleration inequation constraint function, and the joint acceleration equation constraint function.

    Task hierarchical control method, and robot and computer readable storage medium using the same

    公开(公告)号:US11602844B2

    公开(公告)日:2023-03-14

    申请号:US17192906

    申请日:2021-03-05

    Abstract: A task hierarchical control method as well as a robot and a storage medium using the same are provided. The method includes: obtaining a task instruction for a robot, where the task instruction is for determining a target task card including an amount of selection matrices for dividing a target task into the amount of hierarchical subtasks and a controller name for executing each of the hierarchical subtasks; obtaining a null space projection matrix of each of the hierarchical subtasks based on the corresponding selection matrix; generating control finks of the amount according to the corresponding controller of each of the hierarchical subtasks and the corresponding null space projection matrix; calculating a control torque of each of the control links and obtaining a hierarchical control output quantity by adding ail the control torques; and controlling the robot to perform the target task using the hierarchical control output quantity.

    Gait planning method, computer-readable storage medium and robot

    公开(公告)号:US11599118B2

    公开(公告)日:2023-03-07

    申请号:US17137429

    申请日:2020-12-30

    Abstract: A gait planning method includes: performing a gait planning in each center of mass (CoM) timing period of the robot based on a variable-height linear inverted pendulum model, which includes: acquiring a first step length and a second step length at a beginning of each CoM timing period; calculating a first height reduction amplitude and a first fluctuation amplitude of the CoM of the robot according to the first step length; calculating a second height reduction amplitude and a second fluctuation amplitude of the CoM of the robot according to the second step length; and performing a planning to the height of the CoM of the robot in the current CoM timing period, based on the first height reduction amplitude, the first fluctuation amplitude, the second height reduction amplitude, and the second fluctuation amplitude.

    Feedforward control method for floating base dynamics, computer-readable storage medium and robot

    公开(公告)号:US11579591B2

    公开(公告)日:2023-02-14

    申请号:US17088596

    申请日:2020-11-04

    Abstract: A feedforward control method comprising steps of: acquiring kinematic parameters of each joint of a robot based on inverse kinematics according to a pre-planned robot motion trajectory, and setting a center of a body of the robot as a floating base; determining a six-dimensional acceleration of a center of mass of each joint of the robot in a base coordinate system using a forward kinematics algorithm, based on the kinematic parameters of each joint of the robot, and converting the six-dimensional acceleration of the center of mass of each joint of the robot in the base coordinate system to a six-dimensional acceleration in a world coordinate system; and calculating a torque required by a motor of each joint of the robot using an inverse dynamic algorithm, and controlling the motors of corresponding joints of the robot.

    VISUAL POSITIONING METHOD, MOBILE MACHINE USING THE SAME, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20220392103A1

    公开(公告)日:2022-12-08

    申请号:US17488343

    申请日:2021-09-29

    Abstract: A visual positioning method and a mobile machine using the same are provided. The method includes: extracting a plurality of corner feature points corresponding to a current image; determining whether a distance between each pair of the plurality of corner feature points is less than a first preset threshold; if yes, determining whether a grayscale value of each of the plurality of corner feature points with the distance less than the first preset threshold is within a second preset threshold range; if yes, obtaining cluster set(s) of the corner feature points; screening a plurality of valid feature points from the cluster set(s); determining a positioning reliability based on a ratio of amount of the valid feature points to an amount of the plurality of corner feature points; and if the positioning reliability is within a preset range, performing a visual positioning based on the positioning reliability.

Patent Agency Ranking