Abstract:
The present invention provides an emissive region in organic light emitting devices having a combined emission from at least two emissive materials, a fluorescent blue emissive material and a phosphorescent emissive material. The emissive region may further comprise additional fluorescent or phosphorescent emissive materials. Preferably, the emissive region has three different emissive materials—a red emissive material, a green emissive material and a blue emissive material. Organic light emitting devices incorporating the emissive region provides a high color-stability of the light emission over a wide range of currents or luminances.
Abstract:
A display according to various embodiments is disclosed. The display has a frontplane including at least one OLED pixel having multiple subpixels connected to at least one power line. A backplane of the display includes at least one driver circuit connected to two or more of the multiple subpixels. Methods for powering the display are also disclosed.
Abstract:
The present invention relates to metal complexes having novel ligands. The compounds are useful in organic light emitting devices (OLEDs), particularly as emitting dopants. The incorporation of these novel ligands provides red phosphorescent materials with good external quantum efficiency, good color, and long lifetime.
Abstract:
The present invention relates to OLED devices and stacks for OLED devices that include a symmetric emissive-layer architecture. In one embodiment, the present invention relates to an emissive stack having three layers, wherein the top and bottom layers emit light in the same or similar color region while the middle layer emits light in a different color region than the other two layers. In such an embodiment, the three layers are in contact with each other with no other layers in between. The symmetric emissive-layer architecture of the present invention can be used to improve the color stability of OLED devices.
Abstract:
A method of fabricating a first device includes providing a first container that contains, in a desired proportion, a first organic emitting material having a first peak wavelength, a second organic emitting material having a second peak wavelength; providing a substrate having a first electrode disposed thereon; depositing an emissive layer over the first electrode, wherein the first container is a source of material for depositing, and wherein the emissive layer has a homogeneous composition and comprises the first and second organic emitting materials in the desired proportion; depositing a second electrode over the first emissive layer, and wherein the second peak wavelength is between 0 and 40 nm greater than the first peak wavelength.
Abstract:
A compound having an ancillary ligand L1 having the formula: Formula I is disclosed. The ligand L1 is coordinated to a metal M having an atomic number greater than 40, and two adjacent substituents are optionally joined to form into a ring. Such compound is suitable for use as emitters in organic light emitting devices.
Abstract:
Device structures are provided that include one or more plasmonic OLEDs and zero or more non-plasmonic OLEDs. Each plasmonic OLED includes an enhancement layer that includes a plasmonic material which exhibits surface plasmon resonance that non-radiatively couples to an organic emissive material and transfers excited state energy from the emissive material to a non-radiative mode of surface plasmon polaritons in the plasmonic OLED.
Abstract:
An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
Abstract:
An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
Abstract:
Embodiments of the disclosed subject matter may provide a wearable device that includes an organic light emitting diode (OLED) light source to output light. At least one emissive layer of the OLED light source of the wearable device may have a plurality of segments that are independently controllable to output the light at a duty cycle of less than 100%. The OLED light source of the wearable device may be encapsulated.