Abstract:
A power generation system has a fuel cell stack and at least one condensation point in the system at which water present after shutdown of the power generation system can condense or collect. Drying after shutdown is improved by maintaining a temperature gradient between the condensation point and at least one other component in the power generation system after shutdown. In one embodiment, the temperature gradient is maintained by housing the fuel cell stack in a thermally insulated container and arranging the condensation point outside of the insulating container. In another embodiment, drying after shutdown is accomplished with an adsorption unit having a water-adsorbing material arranged in a desired location within the power generation system.
Abstract:
A fuel cell system having at least one fuel cell, which possesses one anode area as well as one cathode area that is separated from the anode area by an electrolyte. The anode area and the cathode area each contain one catalyst for the catalytic conversion of reactants being supplied to the fuel cell. During downtime periods of the fuel cell, the anode area is filled with air or oxygen. Provided in the area of an inlet and/or in the area of an outlet of the anode area is an additional catalyst for the catalytic conversion of hydrogen with oxygen, which is set up to catalytically convert hydrogen diffusing towards the anode area during downtime periods of the fuel cell when the anode area is filled with air or oxygen.
Abstract:
Improvements in startup time for an electrochemical fuel cell system from freezing and sub-freezing temperatures may be observed by minimizing the coolant volume in the coolant subsystem. In particular, this may be accomplished by having a two pump—dual loop cooling subsystem. During startup, one pump directs coolant through a startup coolant loop and after either the fuel cell stack or the coolant temperature reaches a predetermined threshold value, coolant from a main or standard coolant loop is then directed to the fuel cell stack. In an embodiment, coolant from the standard loop mixes with coolant in the startup loop after the predetermined threshold temperature is reached.
Abstract:
The invention relates to a fuel cell system (1, 2) having at least one or more fuel cells (10, 30), wherein the fuel cell (10, 30) extends between a first cell end (10a, 30a) and a second cell end (10b, 30b) in a tubular shape, and wherein the fuel cell (10, 30) is mechanically received with the first cell end (10a, 30a) on an inflow distributor unit (11, 33), and wherein a fuel gas flows through the fuel cell (10, 30), the gas entering the first cell end (10a, 30a) and exiting one of the cell ends (10a, 10b, 30a, 30b) as exhaust gas. According to the invention, means (12, 16, 18, 32) are provided which suction at least a part of the exhaust gas exiting the fuel cell (10) and feed said gas to the inflow distributor unit (11, 33) for recirculation.
Abstract:
A method and apparatus are provided for avoiding gaseous impurity inclusions in at least one gas chamber of a fuel cell during an idle period of the fuel cell through the production of a positive pressure in the at least one gas chamber. The method includes the steps producing educts that are supplied to the fuel cell for operation of the fuel cell during an operating mode, supplying the educts to the gas chamber so that the gas chamber is at least partially filled with the educts, and filling the gas chamber to produce a positive pressure in the gas chamber and thereby essentially avoiding gaseous impurity inclusions.
Abstract:
An anode supply system for a fuel cell stack having an anode section with a gas inlet and a gas outlet includes a sensor device for determining the fuel content inside the anode supply system. A discharge valve is operable to form a gas-conducting connection between the anode supply system and the environment in an open position, and a control device is configured to actuate the discharge valve. The control device controls the discharge valve based on signals from the sensor device, independently of current performance data of the fuel cell stack.
Abstract:
The invention concerns a method to cold-start a fuel cell system at sub-zero temperatures, whereby the fuel cell system comprises a fuel cells stack, upstream of which is connected a heating device to heat a cooling agent to be circulated by a coolant pump. To reduce the demand for stored electrical energy, the method stipulates the following: the cold fuel cell stack is operated at such a capacity that it generates sufficient power to operate the heating device and the coolant pump; the power generated by the fuel cell stack is used to operate the heating device for heating the cooling agent as well as the coolant pump, whereby the coolant pump circulates the cooling agent between the fuel cell stack and the heating device; the heating device is switched off as soon as the fuel cell stack reaches a preset temperature that is higher than the original temperature.
Abstract:
A fuel cell system (10) includes at least one fuel cell (12) provided with an anode area (14) and a cathode area (18) which is separated from the anode area (14) by an electrolyte (16) and a first liquid separator (42). A liquid out (60) of the first liquid separator (42) is connected to a second liquid separator (44) or cathode gas discharge line (24) via a first bypass line (78).
Abstract:
In a method to cold-start a fuel cell system at sub-zero temperatures, the fuel cell system comprises a fuel cell stack, upstream of which is connected a heating device to heat a cooling agent to be circulated by a coolant pump. To reduce the demand for stored electrical energy, the cold fuel cell stack is operated at such a capacity that it generates power that is sufficient only to operate the heating device and the coolant pump. The power generated by the fuel cell stack is used to operate the heating device for heating the cooling agent as well as the coolant pump, whereby the coolant pump circulates the cooling agent between the fuel cell stack and the heating device. The heating device is switched off as soon as the fuel cell stack reaches a preset temperature that is higher than the original temperature.
Abstract:
The subject of the present invention is a fuel cell system having at least one fuel cell which has an anode, a cathode, and a membrane element. Two electrode chambers are disposed in the fuel cell, and the electrode chambers are an anode chamber and a cathode chamber. An educt flows into the anode chamber and into the cathode chamber by means of a respective incoming stream. According to the invention, it is provided that at least one compensation region is disposed on the end of the membrane element and serves solely to moisten and/or temper at least one of the incoming streams.