Abstract:
A vacuum insulated cabinet structure includes panels having sheet metal outer side walls and polymer inner side walls. The polymer inner side walls are heat-sealed to a layer of polymer material laminated to a flat sheet metal blank to form vacuum cavities. The blank is then bent along fold lines to form a cabinet structure.
Abstract:
A refrigerator includes a vacuum insulated cabinet structure having side walls that are formed from a tube that has been folded/deformed into a structure having an “O” shape with vertically enlarged front and rear openings. The interior of the tube may be filled with silica powder or other filler, and a vacuum is formed within the tube. An insulated rear panel may be utilized to close off the rear opening of the vacuum insulated cabinet structure.
Abstract:
An evaporator system that includes: a first evaporator coil at a first evaporator temperature and pressure; a second evaporator coil at a second evaporator temperature and pressure that is less than the first evaporator temperature and pressure where the first evaporator and second evaporator are configured to be thermally disjointed; and a plurality of thermally conductive spaced apart evaporator fins having a plurality of spaced apart thermal break portions positioned between the first evaporator coil and the second evaporator coil that thermally disjoin the first evaporator and the second evaporator.
Abstract:
A method for selectively transferring latent and sensible heat from air in a cooling system of a building structure interior volume that includes at least the steps of: (1) providing a building structure air conditioning system that provides cooling to at least a portion of the interior volume of a building structure and (2) adjusting a ratio of a time coolant flows through the first evaporator to a time coolant flows through the second evaporator such that coolant flows through the first evaporator for more time than the second evaporator when more latent heat is removed from the air and more coolant flows through the second evaporator for more time than the first evaporator when more sensible heat is removed from the air.
Abstract:
A vacuum insulated cabinet structure includes panels having sheet metal outer side walls and polymer inner side walls. The polymer inner side walls are heat-sealed to a layer of polymer material laminated to a flat sheet metal blank to form vacuum cavities. The blank is then bent along fold lines to form a cabinet structure.
Abstract:
An ice making apparatus for an appliance includes a housing that has an interior volume and an ice tray horizontally suspended across the interior volume that is configured to retain water. The ice making apparatus also includes a heat pump thermally coupled to a bottom surface of the ice tray. The heat pump is configured to freeze water in the ice tray and expel heat. A heat transfer device is configured to move heat expelled by the heat pump to an upper portion of the interior volume.
Abstract:
A multi-layer vacuum insulating panel that includes: a first barrier film having at least one polymeric material layer and; a second barrier film having at least one interior polymeric layer, a metal foil layer, and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer; a sealing junction between the first barrier film and the second barrier film at a sealing section about a perimeter of the first barrier film and the second barrier film where the first barrier film and the second barrier film physically and sealingly engage one another; and a multi-section central core having a first fumed silica region that contains at least one fumed silica compound and at least one fibrous (fiberglass) region that are each discrete regions within the interior volume.
Abstract:
A vacuum insulated cabinet structure includes panels having sheet metal outer side walls and polymer inner side walls. The polymer inner side walls are heat-sealed to a layer of polymer material laminated to a flat sheet metal blank to form vacuum cavities. The blank is then bent along fold lines to form a cabinet structure.
Abstract:
A refrigerator includes a vacuum insulated cabinet structure having side walls that are formed from a tube that has been folded/deformed into a structure having an “O” shape with vertically enlarged front and rear openings. The interior of the tube may be filled with silica powder or other filler, and a vacuum is formed within the tube. An insulated rear panel may be utilized to close off the rear opening of the vacuum insulated cabinet structure.
Abstract:
A method of forming a vacuum insulated refrigerator cabinet, the method comprising providing first and second sheets of material. The first sheet of material is thermoformed over a first forming tool forming a first intermediate structure. The first intermediate structure is then thermoformed over a second forming mold to create a second intermediate structure. The second sheet of material is then sealing connected with the second intermediate structure forming an annular space. A vacuum is created in the annular space creating a vacuum insulated cabinet.