Abstract:
A method of forming a vacuum insulated refrigerator cabinet, the method comprising providing first and second sheets of material. The first sheet of material is thermoformed over a first forming tool forming a first intermediate structure. The first intermediate structure is then thermoformed over a second forming mold to create a second intermediate structure. The second sheet of material is then sealing connected with the second intermediate structure forming an annular space. A vacuum is created in the annular space creating a vacuum insulated cabinet.
Abstract:
A refrigeration system including a suction line heat exchanger having a first conduit including a refrigerant liquid which flows inside of the first conduit from the condenser to the evaporator. Also the refrigeration system includes a second conduit in thermal communication with the first conduit and includes a refrigerant fluid, typically a vapor, which flows inside of the second conduit in an opposite direction of flow from the first conduit from the evaporator to the compressor. Additionally, at least one heating device is in thermal communication with at least one of the first conduit and second conduit and is configured to communicate with a refrigeration control system to apply heat along a portion of both the first conduit and the second conduit adjacent to the heating device thereby regulating the flow rate of the refrigerant liquid in the first conduit and the second conduit.
Abstract:
A method for creating a vacuum insulated panel including preforming a continuous insulation member having male and female engaging surfaces and providing a barrier film envelope having an opening. The insulation member is disposed within the barrier film envelope and a tooling fixture is pressed against the barrier film envelope to press the barrier film envelope against the male and female engaging surfaces to remove gas from between the barrier film envelope and the male and female engaging surfaces. Substantially all gas is removed from within the barrier film envelope so that the barrier film envelope substantially conforms to an exterior surface of the insulation member. The opening of the barrier film envelope is then hermetically sealed, wherein the barrier film envelope forms a continuous layer over the core insulation member to form a vacuum insulated panel.
Abstract:
A high-efficiency air conditioning system for conditioning a plurality of zones within an interior of a building that includes: at least two independent ductwork systems within a building wherein each independent ductwork system directs heating and cooling to one zone within the building; a single outdoor unit a refrigerant flow pathway having a common refrigerant flow path portion, a first divergent flow path, and a second divergent flow path; at least one throttling device and at least a first indoor air handling unit providing cooling to a first independent ductwork system and a second indoor air handling unit providing cooling to a second indoor ductwork system. The compressor is incapable of simultaneously supplying both the first evaporator and the second evaporator at their full cooling capacity.
Abstract:
A thermal storage container is coupled to a pump for circulating cooled liquid from the thermal storage container in at least one of two circuits. One circuit includes a heat exchanger coupled to the fresh food evaporator for assisting in cooling the fresh food section of the refrigerator or for chilling the liquid. Another circuit includes a sub-cooler between the condenser and the evaporator for cooling the output from the condenser before entering the evaporator, herby increasing the efficiency of the system. A three-way valve is coupled from the output pump to couple the stored coolant selectively to one or the other or both of the coolant circuits.
Abstract:
A vacuum insulated cabinet structure includes panels having sheet metal outer side walls and polymer inner side walls. The polymer inner side walls are heat-sealed to a layer of polymer material laminated to a flat sheet metal blank to form vacuum cavities. The blank is then bent along fold lines to form a cabinet structure.
Abstract:
An evaporator system that includes: a first evaporator coil at a first evaporator temperature and pressure; a second evaporator coil at a second evaporator temperature and pressure that is less than the first evaporator temperature and pressure where the first evaporator and second evaporator are configured to be thermally disjointed; and a plurality of thermally conductive spaced apart evaporator fins having a plurality of spaced apart thermal break portions positioned between the first evaporator coil and the second evaporator coil that thermally disjoin the first evaporator and the second evaporator.
Abstract:
A refrigerator door includes the ability to mount a variety of modules requiring utilities, such as electricity and fluids, within adjustable locations in the door of the refrigerator. The door includes a conduit extending in at least one direction and including one or more plug-in connectors for allowing a module with a mating connector to be positioned on the door for supplying operating utilities to the module. This allows the purchaser of the refrigerator to add components and accessories to the refrigerator after purchase or select desired features at the time of purchase.
Abstract:
A vacuum panel cabinet structure comprising a frame having side and back framing members defining a frame opening and panel receptacles, framing edges, at least one outwardly expanded framing member, and an inner surface. A plurality of vacuum panels disposed in the panel receptacles. A barrier layer disposed on the vacuum panels. An outer enclosure having at least one extruded channel engaging the at least one outwardly expanded framing member, at least one outwardly contoured hinge, and an inward surface defining a frame receptacle into which the frame is disposed. A liner having at least four sidewalls, a back panel, a liner outer facing surface, and a liner perimetrical flange, wherein the liner outer facing surface is disposed within the frame opening proximate the frame inner surface. The liner perimetrical flange is disposed to the outer enclosure and includes a hermetically sealed infrastructure notch.
Abstract:
An appliance that includes a vacuum insulated cabinet structure having an exterior wall and an interior wall with a vacuum therebetween that forms at least the back wall, bottom, right side, left side, and top of the appliance; and a dual cooling system that includes at least one vapor compression system portion configured to operate during a pull down mode and a thermoelectric portion configured to operate in a steady-state mode without the vapor compression system operating while providing sufficient cooling to offset the steady-state heat load of the appliance.