摘要:
Embodiments of the present invention provide a method and a system for mapping a scene depicted in an acquired stream of video frames that may be used by a machine-learning behavior-recognition system. A background image of the scene is segmented into plurality of regions representing various objects of the background image. Statistically similar regions may be merged and associated. The regions are analyzed to determine their z-depth order in relation to a video capturing device providing the stream of the video frames and other regions, using occlusions between the regions and data about foreground objects in the scene. An annotated map describing the identified regions and their properties is created and updated.
摘要:
Techniques are disclosed for visually conveying a sequence storing an ordered string of symbols generated from kinematic data derived from analyzing an input stream of video frames depicting one or more foreground objects. The sequence may represent information learned by a video surveillance system. A request may be received to view the sequence or a segment partitioned form the sequence. A visual representation of the segment may be generated and superimposed over a background image associated with the scene. A user interface may be configured to display the visual representation of the sequence or segment and to allow a user to view and/or modify properties associated with the sequence or segment.
摘要:
Techniques are disclosed for visually conveying classifications derived from pixel-level micro-features extracted from image data. The image data may include an input stream of video frames depicting one or more foreground objects. The classifications represent information learned by a video surveillance system. A request may be received to view a classification. A visual representation of the classification may be generated. A user interface may be configured to display the visual representation of the classification and to allow a user to view and/or modify properties associated with the classification.
摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.
摘要:
Techniques are disclosed for a computer vision engine to update both a background model and thresholds used to classify pixels as depicting scene foreground or background in response to detecting that a sudden illumination changes has occurred in a sequence of video frames. The threshold values may be used to specify how much pixel a given pixel may differ from corresponding values in the background model before being classified as depicting foreground. When a sudden illumination change is detected, the values for pixels affected by sudden illumination change may be used to update the value in the background image to reflect the value for that pixel following the sudden illumination change as well as update the threshold for classifying that pixel as depicting foreground/background in subsequent frames of video.
摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.
摘要:
A tracker component for a computer vision engine of a machine-learning based behavior-recognition system is disclosed. The behavior-recognition system may be configured to learn, identify, and recognize patterns of behavior by observing a video stream (i.e., a sequence of individual video frames). The tracker component may be configured to track objects depicted in the sequence of video frames and to generate, search, match, and update computational models of such objects.
摘要:
Techniques are disclosed for a computer vision engine to update both a background model and thresholds used to classify pixels as depicting scene foreground or background in response to detecting that a sudden illumination changes has occurred in a sequence of video frames. The threshold values may be used to specify how much pixel a given pixel may differ from corresponding values in the background model before being classified as depicting foreground. When a sudden illumination change is detected, the values for pixels affected by sudden illumination change may be used to update the value in the background image to reflect the value for that pixel following the sudden illumination change as well as update the threshold for classifying that pixel as depicting foreground/background in subsequent frames of video.
摘要:
A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.
摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.