摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.
摘要:
Techniques are disclosed for a computer vision engine to update both a background model and thresholds used to classify pixels as depicting scene foreground or background in response to detecting that a sudden illumination changes has occurred in a sequence of video frames. The threshold values may be used to specify how much pixel a given pixel may differ from corresponding values in the background model before being classified as depicting foreground. When a sudden illumination change is detected, the values for pixels affected by sudden illumination change may be used to update the value in the background image to reflect the value for that pixel following the sudden illumination change as well as update the threshold for classifying that pixel as depicting foreground/background in subsequent frames of video.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.
摘要:
Techniques are disclosed for matching a current background scene of an image received by a surveillance system with a gallery of scene presets that each represent a previously captured background scene. A quadtree decomposition analysis is used to improve the robustness of the matching operation when the scene lighting changes (including portions containing over-saturation/under-saturation) or a portion of the content changes. The current background scene is processed to generate a quadtree decomposition including a plurality of window portions. Each of the window portions is processed to generate a plurality of phase spectra. The phase spectra are then projected onto a corresponding plurality of scene preset image matrices of one or more scene preset. When a match between the current background scene and one of the scene presets is identified, the matched scene preset is updated. Otherwise a new scene preset is created based on the current background scene.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
A tracker component for a computer vision engine of a machine-learning based behavior-recognition system is disclosed. The behavior-recognition system may be configured to learn, identify, and recognize patterns of behavior by observing a video stream (i.e., a sequence of individual video frames). The tracker component may be configured to track objects depicted in the sequence of video frames and to generate, search, match, and update computational models of such objects.
摘要:
Techniques are disclosed for detecting a field-of-view change for a video feed. These techniques differentiate between a new or changed scene and a temporary variation in the scene to accurately detect field-of-view changes for the video feed. A field-of-view change is detected when the position of a camera providing the video feed changes, the video feed is switched to a different camera, the video feed is disconnected, or the camera providing the video feed is obscured. A false-positive field-of-view change is not detected when the scene changes due to a sudden variation in illumination, obstruction of a portion of the camera providing the video feed, blurred images due to an out-of-focus camera, or a transition between bright and dark light when the video feed transitions between color and near infrared capture modes.
摘要:
Techniques are disclosed for matching a current background scene of an image received by a surveillance system with a gallery of scene presets that each represent a previously captured background scene. A quadtree decomposition analysis is used to improve the robustness of the matching operation when the scene lighting changes (including portions containing over-saturation/under-saturation) or a portion of the content changes. The current background scene is processed to generate a quadtree decomposition including a plurality of window portions. Each of the window portions is processed to generate a plurality of phase spectra. The phase spectra are then projected onto a corresponding plurality of scene preset image matrices of one or more scene preset. When a match between the current background scene and one of the scene presets is identified, the matched scene preset is updated. Otherwise a new scene preset is created based on the current background scene.
摘要:
Techniques are disclosed for a computer vision engine to update both a background model and thresholds used to classify pixels as depicting scene foreground or background in response to detecting that a sudden illumination changes has occurred in a sequence of video frames. The threshold values may be used to specify how much pixel a given pixel may differ from corresponding values in the background model before being classified as depicting foreground. When a sudden illumination change is detected, the values for pixels affected by sudden illumination change may be used to update the value in the background image to reflect the value for that pixel following the sudden illumination change as well as update the threshold for classifying that pixel as depicting foreground/background in subsequent frames of video.