Abstract:
Disclosed are systems and methods that allow for concurrent leading edge registration and side edge registration of print media sheet(s). Specifically, segmented scuffer disk(s) are mounted to an axle above a tray. The disk(s) can each comprise multiple segments and, as the axle rotates, these segments can engage a print media sheet in the tray (e.g., the top print media sheet on a stack in the tray) and can continuously force that print media sheet in a first direction against a leading edge registration guide. The segments can also be independently flexible in a second direction perpendicular to the first direction. This independent flexibility allows tamper(s) to perform a tamping process in the second direction at the same time as the print media sheet is forced in the first direction, thereby avoiding any slippage of the print media sheet away from the leading edge registration guide.
Abstract:
Disclosed is a cart having a support surface with a selectively adjustable contour for providing essentially uniform support to a load (e.g., a stack of print media sheets) during receiving and storing modes and for facilitating transfer of the load to another support surface during a transferring mode. The cart can comprise a support surface with alternating fixed and movable sections. In the receiving and storage modes, the movable sections can be top aligned with the fixed sections so that the support surface has an essentially planar contour for providing essentially uniform support. In the transferring mode, the movable sections can be dropped lower so that the support surface has a corrugated contour for facilitating transfer of the load (e.g., using an interdigitation technique). Also disclosed is a printing system sheet stacker incorporating such a cart for receiving, storing and transferring of a sheet stack as well as associated methods.
Abstract:
A material drop ejecting three-dimensional (3D) object printer identifies a time lag error corresponding to a time lag in the response of printer components to component commands. The identified time lag error is provided to a slicer program that uses the identified time lag error to compensate for the time lag in the response of the printer components.
Abstract:
A slicer in a material drop ejecting three-dimensional (3D) object printer generates machine ready instructions that operate components of a printer, such as actuators and an ejector having at least one nozzle, to form features of an object more precisely than previously known. The instructions generated by the slicer use positional data from an encoder to control the actuators to move the ejector and a platform on which the object is formed relative to one another to form edges of the feature.
Abstract:
A system for determining a temperature of an object includes a three-dimensional (3D) printer configured to successively deposit a first layer of material, a second layer of material, and a third layer of material to form the object. The 3D printer is configured to form a recess in the second layer of material. The material is a metal. The system also includes a temperature sensor configured to be positioned at least partially with the recess and to have the third layer deposited thereon. The temperature sensor is configured to measure a temperature of the first layer of material, the second layer of material, the third layer of material, or a combination thereof.
Abstract:
A slicer in a material drop ejecting three-dimensional (3D) object printer generates machine ready instructions that operate components of a printer, such as actuators and an ejector having at least one nozzle, to form features of an object more precisely than previously known. The instructions generated by the slicer use positional data from an encoder to control the actuators to move the ejector and a platform on which the object is formed relative to one another to form edges of the feature.
Abstract:
A three-dimensional printing system, the system comprising a build platform and a printhead for depositing a conductive print material at deposition contact points of a build surface on the build platform. A heating system comprises at least one induction coil for preheating the deposition contact points of the build surface.
Abstract:
A vacuum belt moves between a print head and a manifold. The manifold has manifold chambers, and each of the manifold chambers has manifold openings. Vacuum lines are connected to the manifold chambers. The vacuum lines exert vacuum force upon the manifold chambers, and the manifold openings exert the vacuum force through belt perforations. A cylindrical valve structure is connected to the vacuum lines. The cylindrical valve structure includes a cylindrical sleeve (having sleeve openings connected to the vacuum lines) and an internal valve cylinder positioned within the cylindrical sleeve. The internal valve cylinder has groups of vacuum slots. The internal valve cylinder moves linearly within the cylindrical sleeve (in directions parallel to cylindrical walls of the cylindrical sleeve) to align only one of the groups of vacuum slots with the sleeve openings at a time, so as to control which of the manifold chambers receive the vacuum draw.
Abstract:
Methods and systems output printed items based on a job of instructions from a printing device; cut the printed items into cut items and output the cut items to a first location based on the job of instructions using a patterning device; and pick the cut items from the first location and place the cut items on a first conveyor based on the job of instructions using a robotic arm. The first conveyor is adjacent the first location. Further, methods and systems transport the cut items to a receiving conveyor based on the job of instructions using the first conveyor. The receiving conveyor is adjacent the first conveyor. Also, methods and systems move the receiving conveyor to position the receiving conveyor to receive specific ones of the cut items in corresponding locations based on the job of instructions.
Abstract:
A scissor lift apparatus includes a sliding carriage member and a pivoting linkage added to a conventional scissor lift in order to lower the force required to lift a tray holding heavy media during the initial portion of the lifting action where the scissor lift is fully compressed.