Abstract:
An additive manufacturing system for fabricating multi-sided printed composite sheet structures includes a roll fed duplex architecture that prints polymer images on both sides of a substrate sheet to form two-sided 3D composite layers. A substrate web is fed into the machine, and a top side is printed with a wetting agent, powdered, and the excess powder is removed. The image may be pinned to the substrate in a fusing step so that the web can be inverted to print a second image on the other side. The inversion architecture could include inverting rollers, tubes or a Mobius strip that may flip the substrate for backside printing using a single imaging station. The resulting two-side powdered and pinned substrate would then be cut, stacked, heated and compressed to create a 3-D object with more polymer in the stack, resulting in better adhesive binding characteristics at a much higher production speed.
Abstract:
Methods and systems output printed items based on a job of instructions from a printing device; cut the printed items into cut items and output the cut items to a first location based on the job of instructions using a patterning device; and pick the cut items from the first location and place the cut items on a first conveyor based on the job of instructions using a robotic arm. The first conveyor is adjacent the first location. Further, methods and systems transport the cut items to a receiving conveyor based on the job of instructions using the first conveyor. The receiving conveyor is adjacent the first conveyor. Also, methods and systems move the receiving conveyor to position the receiving conveyor to receive specific ones of the cut items in corresponding locations based on the job of instructions.
Abstract:
An apparatus for picking a product, including: a control circuit; at least one vacuum cup arranged to adhere, with negative pressure and at a first location, at least one sheet of material to the at least one vacuum cup; and at least one sensor to monitor an area proximate the at least one vacuum cup and transmit at least one signal regarding a presence of at least one sheet of material in the area. The apparatus is arranged to displace to a second location. The control circuit is arranged to determine, responsive to the at least one signal, the at least one sheet of material is not present in the area and generate an error signal indicating that the at least one sheet of material is not present in the area.
Abstract:
A Document Finishing Architecture Master controller includes an input communication link enabling two-way communication with a document-handling device. The document-handling device is restricted to connections with document finishing devices (DFDs) connected in series. Output communication links are operatively connected to the input communication link. The output communication links enable two-way communication over parallel communication networks with the DFDs. A translator is operatively connected to the output communication link, and driver interfaces are operatively connected to the translator. Document-finishing signals originating from the document-handling device are translated by the translator to a protocol used by the DFDs. The document-finishing signals are communicated from the translator to the driver interfaces, and from the driver interface to the DFDs. DFD signals from the DFDs are translated by the translator to a protocol used by the document-handling device. The DFD signals are communicated from the driver interfaces to the translator and from the translator to the document-handling device.
Abstract:
A print job includes a container page, product pages, and a stacking pattern. Methods and systems automatically pattern a first material according to a container pattern specified by the container page to output a flat and patterned container sheet to a stacking location, and automatically fold the flat and patterned container sheet at the stacking location to form a three-dimensional container. Further, such methods and systems automatically print markings specified by the product pages on additional sheets of material. Then, after forming the three-dimensional container and printing the markings, such methods and systems automatically pattern the additional sheets of material according to a product pattern specified by the product pages to output product items to the stacking location. Further, such methods and systems automatically stack the product items in the three-dimensional container. The container pattern has a specific size and shape to accommodate the stacking pattern.
Abstract:
A web sheet processing system for cutting and/or stacking AM composite printed sheets from the web combines web edge waste with the cut sheets, stacking the waste with the 3D object. The waste may be removed during the cleaning of the 3d object (e.g., by abrasive blasting, chemical removal, dissolution) to result in a 3D printed object. This approach eliminates the separate need for waste removal of a rewound web of substrate material waste. In examples, a tractor drive transport assembly ensures consistent web/sheet motion via tractor feeding along the edges of the web/sheet to a stacker subsystem. The tractor drive transport assembly, in combination with a drive guide, positions the cut sheets over the stacker subsystem for release onto the top of a stack, with the substrate waste that would normally be processed downstream stacked with the 3D object for removal during a normal cleaning of the object.
Abstract:
An apparatus for picking a product, including: at least one vacuum cup including at least one axis passing through the at least one vacuum cup; and at least one damping device surrounding at least a portion of the at least one vacuum cup in a radial direction orthogonal to the at least one axis. The at least one vacuum cup is arranged to create negative pressure and adhere, with the negative pressure, the at least one sheet of material to the at least one vacuum cup. The at least one damping device is arranged to contact the at least one sheet of material to limit displacement of the at least one sheet of material with respect to the at least one vacuum cup.
Abstract:
A Document Finishing Architecture Master controller includes an input communication link enabling two-way communication with a document-handling device. The document-handling device is restricted to connections with document finishing devices (DFDs) connected in series. Output communication links are operatively connected to the input communication link. The output communication links enable two-way communication over parallel communication networks with the DFDs. A translator is operatively connected to the output communication link, and driver interfaces are operatively connected to the translator. Document-finishing signals originating from the document-handling device are translated by the translator to a protocol used by the DFDs. The document-finishing signals are communicated from the translator to the driver interfaces, and from the driver interface to the DFDs. DFD signals from the DFDs are translated by the translator to a protocol used by the document-handling device. The DFD signals are communicated from the driver interfaces to the translator and from the translator to the document-handling device.
Abstract:
An apparatus for picking a product, including a control circuit, at least one vacuum cup arranged to adhere at least one sheet of material to the at least one vacuum cup, and at least one sensor configured to monitor an area proximate the at least one vacuum cup, and transmit at least one signal regarding a presence of at least one sheet of material in the area, wherein the apparatus is arranged to displace to a second location while continuously monitoring the area proximate the at least one vacuum cup, the at least one sensor is configured to transmit the at least one signal, and the control circuit is arranged to determine, responsive to the at least one signal, the sheet of material is not present in the area, and generate an error signal indicating that the at least one sheet of material is not present in the area.
Abstract:
An apparatus for picking a product, including a control circuit, at least one vacuum cup arranged to adhere at least one sheet of material to the at least one vacuum cup, and at least one sensor configured to monitor an area proximate the at least one vacuum cup, and transmit at least one signal regarding a presence of at least one sheet of material in the area, wherein the apparatus is arranged to displace to a second location while continuously monitoring the area proximate the at least one vacuum cup, the at least one sensor is configured to transmit the at least one signal, and the control circuit is arranged to determine, responsive to the at least one signal, the sheet of material is not present in the area, and generate an error signal indicating that the at least one sheet of material is not present in the area.