Abstract:
A system and method for detection of drive-arounds in a retail setting. An embodiment includes acquiring images of a retail establishment, analyzing the images to detect entry of a customer onto the premises of the retail establishment, tracking a detected customer's location as the customer traverses the premises of the retail establishment, analyzing the images to detect exit of the detected customer from the premises of the retail establishment, and generating a drive-around notification if the customer does not enter a prescribed area or remain on the premises of the retail location for at least a prescribed minimum period of time.
Abstract:
A system and method for detection of a goods-received event includes acquiring images of a retail location including a vehicular drive-thru, determining a region of interest within the images, the region of interest including at least a portion of a region in which goods are delivered to a customer, and analyzing the images using at least one computer vision technique to determine when goods are received by a customer. The analyzing includes identifying at least one item belonging to a class of items, the at least one item's presence in the region of interest being indicative of a goods-received event.
Abstract:
A system and method for automatic classification and detection of a payment gesture are disclosed. The method includes obtaining a video stream from a camera placed above at least one region of interest, the region of interest classifying the payment gesture. A background image is generated from the obtained video stream. Motion is estimated in at least two consecutive frames from the video stream. A representation is created from the background image and the estimated motion occurring within the at least one region of interest. The payment gesture is detected based on the representation.
Abstract:
A method, non-transitory computer readable medium, and apparatus for compressive imaging of a scene in a single pixel camera are disclosed. For example, the method moves a pseudo-random pattern media behind an aperture until a pseudo-random sampling function of a plurality of pseudo-random sampling functions is viewable through the aperture, records a value of an intensity of a modulated light from the scene with a detector, wherein the intensity of the modulated light is representative of an inner product between the pseudo-random sampling function and an image of the scene and repeats the moving and the recording until a necessary number of a plurality of inner products are processed.
Abstract:
Presented are a system, method, and apparatus for loan risk assessment by assignment of a specific loan account to a loan cluster of a plurality of loan clusters. A computing device receives plurality of loan account histories describing a plurality of loan accounts during a training phase. An appropriate supervised classification method is applied to the loan account histories to obtain a mathematical description of loan cluster set. Next, the computing device receives a test loan account payment history describing a test loan account to be analyzed. The test loan account is assigned to at least one cluster of the previously trained cluster set. One or a plurality of causes is then determined for assigning the test loan account to the cluster set; and a predicted risk value for the test loan account is determined based on the cluster the test loan account is assigned to.
Abstract:
A method, non-transitory computer readable medium, and apparatus for managing inventory are disclosed. For example, the method monitors a region of interest to determine an inventory level based upon a depth image captured by a depth sensing device, calculates a change in a depth in the region of interest from the depth image that is captured and determines a change in the inventory level associated with the change in the depth of the region of interest.
Abstract:
A method and system for video-based object tracking includes detecting an initial instance of an object of interest in video captured of a scene being monitored and establishing a representation of a target object from the initial instance of the object. The dominant motion trajectory characteristic of the target object are then determined and a frame-by-frame location of the target object can be collected in order to track the target object in the video.
Abstract:
When performing video-based speed enforcement a main camera and a secondary RGB traffic camera are employed to provide improved accuracy of speed measurement and improved evidentiary photo quality compared to single camera approaches. The RGB traffic camera provides sparse secondary video data at a lower cost than a conventional stereo camera. The sparse stereo processing is performed using the main camera data and the sparse RGB camera data to estimate a height of one or more tracked vehicle features, which in turn is used to improve speed estimate accuracy. By using secondary video, spatio-temporally sparse stereo processing is enabled specifically for estimating the height of a vehicle feature above the road surface.
Abstract:
A mobile electronic device processes a sequence of images to identify and re-identify an object of interest in the sequence. An image sensor of the device, receives a sequence of images. The device detects an object in a first image as well as positional parameters of the device that correspond to the object in the first image. The device determines a range of positional parameters within which the object may appear in a field of view of the device. When the device detects that the object of interest exited the field of view it subsequently uses motion sensor data to determine that the object of interest has likely re-entered the field of view, it will analyze the current frame to confirm that the object of interest has re-entered the field of view.
Abstract:
A system, method, and apparatus for determining risk associated with a plurality of loan accounts, having an off-line mode and an online mode. In the off-line mode a first plurality of account histories is received. A maximum value variable m is set. A definition is received of a predetermined maximum look-ahead timeframe p. An iterative variable i is set equal to zero. While i is less than the maximum value variable m, a plurality of variables associated with an account history equaling the iterative variable i are stored and i incremented by 1. A predictive multi-output risk model is trained. In the online mode, a second plurality of account histories is received. A determination is made which accounts have a future risk level greater than a current risk level, and a further determination made which accounts currently require one or more tasks. Accounts requiring tasks are automatically assigned.