Abstract:
This disclosure provides an image processing method and system for recognizing barcodes and/or product labels. According to an exemplary embodiment, the method uses a multifaceted detection process that includes both image enhancement of a candidate barcode region and other product label information associated with a candidate barcode region to identify a product label, where the candidate barcode region includes a nonreadable barcode. According to one exemplary application, a store profile is generated based on the identifications of the product labels which are associated with a location of a product within a store.
Abstract:
A system and method for object tracking and timing across multiple camera views includes local and global tracking modules for tracking the location of objects as they traverse particular regions of interest within an area of interest. A local timing module measures the time spent with each object within the area captured by a camera. A global timing module measures the time taken by the tracked object to traverse the entire area of interest or the length of the stay of the object within the area of interest.
Abstract:
Eliminate or reduce the impact of glare in printed information tag recognition applications using single- and multi-pose external illumination coupled with intelligent processing. A shelf imager can acquire shelf images for printed information tag localization and recognition. An external illuminator can provide at least one illumination condition/pose for shelf image acquisition in addition to lighting associated with the enclosed environment. A glare region of interest (ROI) detector can analyze all or a portion of the acquired shelf images for glare to determine whether additional images need to be acquired using different illumination conditions provided by the single- or multi-pose external illuminator or whether full or portion of acquired images need to be analyzed by a printed information tag locator and recognizer. A printed information tag locator and recognizer can analyze all or a portion of the acquired images to localize and recognize data printed on the printed information tags.
Abstract:
When performing video-based speed enforcement a main camera and a secondary RGB traffic camera are employed to provide improved accuracy of speed measurement and improved evidentiary photo quality compared to single camera approaches. The RGB traffic camera provides sparse secondary video data at a lower cost than a conventional stereo camera. The sparse stereo processing is performed using the main camera data and the sparse RGB camera data to estimate a height of one or more tracked vehicle features, which in turn is used to improve speed estimate accuracy. By using secondary video, spatio-temporally sparse stereo processing is enabled specifically for estimating the height of a vehicle feature above the road surface.
Abstract:
A method of three-dimensional printing comprises heating a first portion of a build surface on a platform by impinging a laser beam on the build surface so as to provide a preheated drop contact point having a first deposition temperature. A first drop of a liquid print material is ejected from a printhead of a 3D printer so as to deposit the first drop on the preheated drop contact point at the first deposition temperature.
Abstract:
A store profile generation system includes a mobile base and an image capture assembly mounted on the base. The assembly includes at least one image capture device for acquiring images of product display units in a retail environment. A control unit acquires the images captured by the at least one image capture device at a sequence of locations of the mobile base in the retail environment. The control unit extracts product-related data from the acquired images and generates a store profile indicating locations of products and their associated tags throughout the retail environment, based on the extracted product-related data. The store profile can be used for generating new product labels for a sale in an appropriate order for a person to match to the appropriate locations in a single pass through the store.
Abstract:
A method for detecting settle-down time in a space includes acquiring a sequence of frames capturing a select space from a first camera. The method includes determining an initial time for computing a duration it takes for an associated occupant to settle into a seat in the select space. The method includes determining one or more candidate frames from the sequence of frames where one or both of a sitting behavior and seat occupancy is observed at the seat. The method includes determining a final frame and a final time associated with the final frame from the one or more candidate frames. The method includes computing the settle-down time using the initial and the final times.
Abstract:
The present disclosure relates to systems and methods for use in a retail store. An example system includes a mobile base, a printer, an image capture subsystem on the mobile base and coupled to the printer, the image capture system including at least one image capture device and at least one image processor, the image capture device configured to obtain images of items in the retail store, the image processor configured to derive item identification data from the images of items, and a control subsystem coupled to the printer and to the image capture subsystem, where the control subsystem is configured to receive information identifying items requiring signage, acquire item identification data from the image capture subsystem, determine, based on the information identifying items requiring signage and on the item identification data, items requiring signage, and to direct the printer to print signage for the items requiring signage.
Abstract:
A method and system for video-based object tracking includes detecting an initial instance of an object of interest in video captured of a scene being monitored and establishing a representation of a target object from the initial instance of the object. The dominant motion trajectory characteristic of the target object are then determined and a frame-by-frame location of the target object can be collected in order to track the target object in the video.
Abstract:
A method and system for video-based object tracking includes detecting an initial instance of an object of interest in video captured of a scene being monitored and establishing a representation of a target object from the initial instance of the object. The dominant motion trajectory characteristic of the target object are then determined and a frame-by-frame location of the target object can be collected in order to track the target object in the video.