摘要:
In a method for forming an inside electrode within a cup-type electrolyte member of an O.sub.2 sensor element, firstly, a nozzle having a paste discharge hole is prepared. The nozzle is inserted into an inside space of the electrolyte member. Then, the paste discharge hole of the nozzle is relatively rotated with respect to the electrolyte member along an inside surface of the electrolyte member while discharging paste therefrom onto the inside surface. Accordingly, the inside electrode formation portion is formed. After forming the inside electrode formation portion, the electrolyte member is baked. As a result, the inside electrode can be disposed on a required portion of the electrolyte member with a uniform thickness.
摘要:
An oxygen concentration detector element 2 includes a cup-shaped solid electrolyte 20 with an inside chamber 25 opened at one end and closed at the other end. An external electrode 21 is formed on an outer surface of solid electrolyte 20 by dipping solid electrolyte 20 in first chemical plating liquid 81, while an internal electrode 22 is formed on an inner surface of solid electrolyte 20 by introducing second chemical plating liquid 82 into inside chamber 25. First, in an injecting step, an injection needle 11 is inserted into inside chamber 25 and second chemical plating liquid 82 is introduced into inside chamber 25 via injection needle 11, and then injection needle 11 is pulled out of inside chamber 25. Next, in a plating step, internal electrode 22 is formed on the inner surface of inside chamber 25 using second chemical plating liquid 82. Then, in a discharging step, residual second chemical plating liquid 82 is discharged from inside chamber 25.
摘要:
An oxygen concentration detecting device comprises a solid electrolyte body, inner and outer electrodes formed on the opposite sides of the solid electrolyte body, and a protective layer formed on the outer electrode and comprised of coarse particles and fine particles mutually bonded through an inorganic binder while substantially keeping the original forms of the both types of particles. A ratio of an average particle size, RB, of the coarse particles to an average particle size, RA, of the fine particles of 30:1 or above, and a content, WA, of the fine particles in the protective layer based on the total content, W, of the content, WA, of the fine particles and the content, WB, of the coarse particles on the weight basis is in the range of 15 to 80 %. A method for fabricating the detecting device having such a protective layer as set out above is also described.
摘要:
According to the present invention, an oxygen sensor element includes a solid electrolyte having a side surface at one side thereof, the side surface being contactable with a gas to be measured, a skeletal electrode provided on the side surface and having a plurality of pore portions, each of the pore portions passing through the skeletal electrode up to the solid electrolyte, and a reactive electrode made of a porous film and provided in each of the pore portions, a thickness of the porous film being smaller than that of said skeletal electrode. An area percentage (SH/SZ) which is a ratio of a total area (SH) of the reactive electrode to a total area (SZ) of the skeletal electrode and the reactive electrode is in a range from 10 to 50%, an average area (SA) of the pore portions is 100 .mu.m.sup.2 or less, a film thickness of the skeletal electrode is in a range from 1.5 to 4 .mu.m, and the film thickness of the reactive electrode is in a range from 0.6 to 1.5 .mu.m. The oxygen sensor element is superior in the heat resistance characteristics and the response characteristics.
摘要:
The oxygen sensor has a solid electrolytic element made of an oxygen ion-conducting metal oxide. This element is formed in a cup shape, closed at one end and opened at its other end. The outer peripheral surface of the element is exposed to exhaust gas, and the inner peripheral surface of the element is exposed to the atmosphere. A first electrode is fixed to the outer peripheral surface of the element, and a second electrode is fixed to the inner peripheral surface of the element. An electrically insulating layer is formed on the outer peripheral surface of the element except where the first electrode is disposed. A metal lead of thin film, connected to the first electrode, is formed on the insulating layer. Further, a retaining lead connected to the first electrode is formed on the metal lead. This retaining lead is formed by densely sintering a conductive material and a binding material.