Abstract:
A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
Abstract:
A paper feeding apparatus including a paper pickup roller assembly, a paper conveying roller assembly, a one-way driving assembly, and a reverse driving assembly is provided. The one-way driving and the reverse driving assembly are connected to a driving device, such as a motor, wherein the one-way driving assembly is engaged with the paper pickup roller assembly only in one direction to drive the paper pickup roller assembly forward as the driving device rotates forward and stop driving the paper pickup roller assembly as the driving device rotates backward, and the reverse driving assembly is provided for driving the paper conveying roller assembly to constantly rotate forward for conveying the paper sheet to move forward no matter whether the driving device rotates forward or backward.
Abstract:
A paper feeding apparatus including a paper pickup roller assembly, a paper conveying roller assembly, a one-way driving assembly, and a reverse driving assembly is provided. The one-way driving and the reverse driving assembly are connected to a driving device, such as a motor, wherein the one-way driving assembly is engaged with the paper pickup roller assembly only in one direction to drive the paper pickup roller assembly forward as the driving device rotates forward and stop driving the paper pickup roller assembly as the driving device rotates backward, and the reverse driving assembly is provided for driving the paper conveying roller assembly to constantly rotate forward for conveying the paper sheet to move forward no matter whether the driving device rotates forward or backward.
Abstract:
A heating and fixing device for toner particles is provided, which includes a pressing element, at least one elastic element, a tube-shaped film, and a pressing roller. The elastic element is provided for generating force to press the pressing element constantly. The heating element is provided for heating the pressing element through the heated side. The film is disposed around the pressing element and the heating element, wherein the film slides relative to the pressing element, and the pressing element presses against the film from the inner side of the film and transfers heat to the film by heat conduction. The pressing element presses the film to contact the pressing roller, so that the recording medium is pressed and heated when traveled between the pressing roller and the film.
Abstract:
A paper conveying apparatus and method for flipping paper includes a paper feeding roller that can rotate in a positive direction or in a reverse direction, a motion transfer member that has one end coupled with the paper feeding roller, and a paper depressing element coupled with another end of the motion transfer member to be driven and rotated. The method of flipping paper includes: first, feeding a sheet of paper into a first paper conveying path; next, depressing the paper into a second paper conveying path while the paper is leaving the first paper conveying path; and reentering the paper from the second paper conveying path into the first paper conveying path upside down.
Abstract:
An optical mechanism installed in an office machine, which has a machine base defining an internal space, and a paper-feeding mechanism arranged on the machine base, the paper-feeding mechanism having an inside receiving space and a bottom incident zone for the passing of light. The optical mechanism has an optical-path device formed of an image sensor and an optical module and mounted in the internal space inside the machine base, and a light-focusing structure mounted in the receiving space inside the paper-feeding mechanism above the incident zone for increasing optical path.
Abstract:
A double-sided printing device for paper handling is proposed by the invention to allow users to print on both sides of a sheet of paper. The double-sided printing device employs the interaction between the switches, the obstructing unit and the turning unit to allow a sheet of paper to enter the turning unit and be turned over so that its back side will be directed to the printing unit.
Abstract:
A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
Abstract:
A paper conveying apparatus and method for flipping paper includes a paper feeding roller that can rotate in a positive direction or in a reverse direction, a motion transfer member that has one end coupled with the paper feeding roller, and a paper depressing element coupled with another end of the motion transfer member to be driven and rotated. The method of flipping paper includes: first, feeding a sheet of paper into a first paper conveying path; next, depressing the paper into a second paper conveying path while the paper is leaving the first paper conveying path; and reentering the paper from the second paper conveying path into the first paper conveying path upside down.
Abstract:
A double-side scan device for performing a single-side scan operation or a double-side scan operation selectively includes a document conveyer, a first transparent device, a second transparent device, and an image scan module. The image scan module moves to one side of the first transparent device to capture an image of one surface/side of a document and moves to one side of the second transparent device to capture an image of the other surface/side of the document, respectively.