Abstract:
The disclosure generally relates to a method and apparatus for a high efficiency redundancy scheme for a memory system. In one embodiment, the disclosure relates to a memory circuit having: a memory array defined by a plurality of memory cells arranged in one or more columns and one or more rows, each memory cell communicating with one of a pair of complementary bit-lines and with a word-line; a plurality of IO circuits, each IO circuit associated with one of the plurality of memory cell columns; a plurality of redundant bit-lines, each redundant bit line communicating with a redundant bit cell; a first circuit for detecting a defective memory cell in said memory circuit; a second circuit for selecting one of the plurality of redundant bit-lines for switching from the failed memory cell to the redundant memory cell; and a third circuit for directing a word-line pulse of said defective memory cell to said selected redundant memory cell.
Abstract:
An integrated circuit for programming an electrical fuse includes a first programming device coupled to the electrical fuse for selectively providing the same with a first programming current, and a second programming device coupled to the electrical fuse for selectively providing the same with a second programming current. A detection module is coupled to the electrical fuse for generating an output indicating a resistance level of the electrical fuse, wherein the resistance level has three or more predetermined states, which are provided by selectively programming the electrical fuse with the first or second programming current.
Abstract:
A self-lubricating device for supplying lubricant onto a threaded guide rod, includes a movable member disposed above the threaded guide rod, and has lower threads meshed with the threaded guide rod, and a lubricant supplier secured on the movable member, and has a nozzle extending into the movable member for supply of lubricant onto the threaded guide rod. The movable member is movable axially on the threaded guide rod in such a manner to rotate the latter upon actuated.
Abstract:
A manufacturing method of a color filter including following steps is provided. First, a partition is formed on a substrate to form a plurality of pixel regions on the substrate. Next, a color pigment is provided along a continuous pigment-providing route, so as to form the color pigment on a sequence of pixel regions among the plurality of pixel regions and the partition. The method mentioned above can prevent the unfilled phenomenon of the pigment around the corners of the pixel region. Besides, a liquid crystal display panel having the color filter is also provided.
Abstract:
A system and method for writing a SRAM cell coupled to complimentary first and second bit-lines (BLs) is disclosed, the method comprising asserting a word-line (WL) selecting the SRAM cell to a first positive voltage, providing a second positive voltage at the first BL, providing a first negative voltage at the second BL, and asserting a plurality of WLs not selecting the SRAM cell to a second negative voltage, wherein the writing margin of the SRAM cell is increased.
Abstract:
A color filter including a substrate, a bank and a plurality of color filter films is provided. The bank is disposed on the substrate and has many openings. The bank has both a bottom surface contacting the substrate and a top surface exceeding the bottom surface. An outline of the bottom surface does not exceed that of the top surface. Besides, the color filter films are disposed on the substrate exposed by the openings, respectively, and each of the color filter films has a curved top surface. In the above-mentioned color filter, wetability between the bank and the color filter films is favorable.
Abstract:
A writing dynamic power control circuit is disclosed, which comprises a BL and its complementary BLB, at least one memory cell coupled to both the BL and BLB, a first NMOS transistor having a source, a drain and a gate coupled to the BL, the Vss and a first data signal, respectively, a second NMOS transistor having a source, a drain and a gate coupled to the BLB, the Vss and a second data signal, respectively, wherein the second data signal is complementary to the first data signal, a first PMOS transistor having a source, a drain and a gate coupled to a high voltage power supply (CVDD) node, the BLB and the BL, respectively, and a second PMOS transistor having a source, a drain and a gate coupled to the CVDD node, the BL and the BLB, respectively.
Abstract:
A pulse generator is disclosed which comprises a clock buffer coupled to a data latch coupled to a delay unit; a logic device coupled to the delay unit and the data latch, the logic device adapted to logically combine signals generated from the delay unit and the data latch and to generate a signal pulse; and a signal reset unit coupled to the data latch. A method of generating a pulse is also disclosed, comprising generating a signal state by sensing a rising edge of an external clock; latching the signal state for generating a latched signal state; delaying the latched signal state for generating a delayed signal state; and logically combining the latched signal state and the delayed signal state for generating a signal pulse.
Abstract:
The disclosure generally relates to a method and apparatus for a high efficiency redundancy scheme for a memory system. In one embodiment, the disclosure relates to a memory circuit having: a memory array defined by a plurality of memory cells arranged in one or more columns and one or more rows, each memory cell communicating with one of a pair of complementary bit-lines and with a word-line; a plurality of IO circuits, each IO circuit associated with one of the plurality of memory cell columns; a plurality of redundant bit-lines, each redundant bit line communicating with a redundant bit cell; a first circuit for detecting a defective memory cell in said memory circuit; a second circuit for selecting one of the plurality of redundant bit-lines for switching from the failed memory cell to the redundant memory cell; and a third circuit for directing a word-line pulse of said defective memory cell to said selected redundant memory cell.
Abstract:
A fuse circuit comprising one or more one-time programmable electrical fuses; one or more unidirectional conductive devices each coupled to one of the fuses; a programming device coupled to the unidirectional conductive devices; and a selection module coupled to the electrical fuses for selecting a predetermined electrical fuse, wherein upon a selection by the selection module, a programming current is introduced through at least one selected electrical fuse, wherein the selection module is an N-to-one multiplexer selecting one of the N number of electrical fuses to be programmed, and the unidirectional conductive devices not coupled to the selected electrical fuse to prevent the programming current from interfering with the remaining electrical fuses.