Abstract:
A system and method for writing a SRAM cell coupled to complimentary first and second bit-lines (BLs) is disclosed, the method comprising asserting a word-line (WL) selecting the SRAM cell to a first positive voltage, providing a second positive voltage at the first BL, providing a first negative voltage at the second BL, and asserting a plurality of WLs not selecting the SRAM cell to a second negative voltage, wherein the writing margin of the SRAM cell is increased.
Abstract:
A writing dynamic power control circuit is disclosed, which comprises a BL and its complementary BLB, at least one memory cell coupled to both the BL and BLB, a first NMOS transistor having a source, a drain and a gate coupled to the BL, the Vss and a first data signal, respectively, a second NMOS transistor having a source, a drain and a gate coupled to the BLB, the Vss and a second data signal, respectively, wherein the second data signal is complementary to the first data signal, a first PMOS transistor having a source, a drain and a gate coupled to a high voltage power supply (CVDD) node, the BLB and the BL, respectively, and a second PMOS transistor having a source, a drain and a gate coupled to the CVDD node, the BL and the BLB, respectively.
Abstract:
A power control circuit for an integrated circuit module includes at least one switch device coupled between a supply voltage and a power node of the integrated circuit module; and a switch control module having a first terminal coupled to the switch device, a second terminal coupled to a control signal, a third terminal coupled to a first storage node of at least one tracking cell, a fourth terminal coupled to a second storage node of the tracking cell, and a fifth terminal coupled to the power node of the integrated circuit module, for controlling the switch device to pass the supply voltage to the power node with or without a substantial voltage drop depending on an operation mode of the integrated circuit module.
Abstract:
The present invention relates generally to an integrated circuit (IC) design, and more particularly to a method and apparatus for providing an SRAM cell with improved read and write margins. The method includes providing a first negative voltage to a bit-line and a supply voltage to an inverse bit-line to increase a first potential difference between the bit-line and the inverse bit-line during a write operation of a logic “0.” The method also includes providing the first negative voltage to the inverse bit-line and the supply voltage to the bit-line to increase the first potential difference during a write operation of a data “1.”
Abstract:
A memory includes a plurality of cells arranged in a matrix having a plurality of rows and a plurality of columns, wherein each cell is capable of storing a bit. Each cell is coupled between a first power supply node that receives a power supply voltage and a second power supply node that receives a second voltage. A plurality of word lines are associated with the memory cells and supplied by a third voltage in read or write operation. The third voltage is a suppressed power supply voltage. The second voltage is negative in read operation and positive in write operation.
Abstract:
The present invention relates generally to an integrated circuit (IC) design, and more particularly to a method and apparatus for providing an SRAM cell with improved read and write margins. The method includes providing a first negative voltage to a bit-line and a supply voltage to an inverse bit-line to increase a first potential difference between the bit-line and the inverse bit-line during a write operation of a logic “0.” The method also includes providing the first negative voltage to the inverse bit-line and the supply voltage to the bit-line to increase the first potential difference during a write operation of a data “1.”
Abstract:
A memory includes a plurality of cells arranged in a matrix having a plurality of rows and a plurality of columns, wherein each cell is capable of storing a bit. Each cell is coupled between a first power supply node that receives a power supply voltage and a second power supply node that receives a second voltage. A plurality of word lines are associated with the memory cells and supplied by a third voltage in read or write operation. The third voltage is a suppressed power supply voltage. The second voltage is negative in read operation and positive in write operation.
Abstract:
The disclosure generally relates to a method and apparatus for a high efficiency redundancy scheme for a memory system. In one embodiment, the disclosure relates to a memory circuit having: a memory array defined by a plurality of memory cells arranged in one or more columns and one or more rows, each memory cell communicating with one of a pair of complementary bit-lines and with a word-line; a plurality of IO circuits, each IO circuit associated with one of the plurality of memory cell columns; a plurality of redundant bit-lines, each redundant bit line communicating with a redundant bit cell; a first circuit for detecting a defective memory cell in said memory circuit; a second circuit for selecting one of the plurality of redundant bit-lines for switching from the failed memory cell to the redundant memory cell; and a third circuit for directing a word-line pulse of said defective memory cell to said selected redundant memory cell.
Abstract:
The disclosure generally relates to a method and apparatus for a high efficiency redundancy scheme for a memory system. In one embodiment, the disclosure relates to a memory circuit having: a memory array defined by a plurality of memory cells arranged in one or more columns and one or more rows, each memory cell communicating with one of a pair of complementary bit-lines and with a word-line; a plurality of IO circuits, each IO circuit associated with one of the plurality of memory cell columns; a plurality of redundant bit-lines, each redundant bit line communicating with a redundant bit cell; a first circuit for detecting a defective memory cell in said memory circuit; a second circuit for selecting one of the plurality of redundant bit-lines for switching from the failed memory cell to the redundant memory cell; and a third circuit for directing a word-line pulse of said defective memory cell to said selected redundant memory cell.
Abstract:
A system and method for writing a SRAM cell coupled to complimentary first and second bit-lines (BLs) is disclosed, the method comprising asserting a word-line (WL) selecting the SRAM cell to a first positive voltage, providing a second positive voltage at the first BL, providing a first negative voltage at the second BL, and asserting a plurality of WLs not selecting the SRAM cell to a second negative voltage, wherein the writing margin of the SRAM cell is increased.