摘要:
A power control method and device are disclosed. The method comprises: a user equipment receiving a power adjustment value corresponding to transmit diversity determined and sent by a network side device; the user equipment determines a transmission power for a PUCCH transmission according to the power adjustment value. In the embodiment of the present invention, the transmission power adopted by the transmission PUCCH channel is determined according to the power adjustment value corresponding to the transmission diversity, solving the problem of inaccurate power control after introducing the PUCCH transmission diversity, so that each PUCCH format is capable of performing transmission diversity power control independently.
摘要:
Disclosed are a scrambling transmission method and device thereof. The method comprises: a user terminal generates the message to be sent and modulates the message to be sent to generate the data modulation symbols; the user terminal scrambles the data modulation symbol using the cell-specific scrambling sequence, to generate the scrambled data modulation symbols; and the user terminal sending the scrambled data modulation symbols via a DFT-S-OFDM transmission structure with a time domain spreading. The present invention can reduce the interference among different user terminal data on the same resource in adjacent cells, thus improve the detection performance of uplink control signals
摘要:
The present invention discloses a method and device for resource allocation of backhaul link control channel information. Upon application of a technical solution proposed by embodiments of this invention and based on the condition of introducing DMRS and CSI-RS, make remaining REs which are not occupied by CSI-RS and/or DM-RS in OFDM symbol that contains REs for transmitting CSI-RS and/or DM-RS constitute REG to transmit backhaul link control channel information or abandon them; thus, on the basis of maximizing the reservation of existing LTE system specification, specifying resource allocation scheme of backhaul link control channel information in corresponding physical resource block, giving consideration to both simple specification design and full utilization of resources, and realizing flexible design and allocation in light of the demand of a real system.
摘要:
The present invention discloses a method and equipment for UCI transmission. Upon application of the technical solution provided in embodiments of the present invention, UE transmitting UCI through a selected PUSCH is realized when multiple PUSCH transmissions are available for a UE in one uplink subframe in LTE-A carrier aggregation system, which solves the problem on how to transmit UCI only through one PUSCH when multiple PUSCH transmissions are available.
摘要:
The present invention relates to the technical field of wireless communications. Provided arc an indication method, a base station, and a system for channel state information (CSI) feedback. The indication method comprises: the base station allocating to a user equipment (UE) a CSI feedback method (S701); by means of allocation signaling, the base station transmitting to the UE the CSI feedback method allocated, instructing the CSI feedback method to be employed by the UE when making an aperiodic CSI report (S702). The feedback method comprises: the UE receiving the allocation instruction transmitted by the base station, acquiring the CSI feedback method allocated for the UE by the base station; when the UE confirms the triggering of an aperiodic CSI report, using the CSI feedback method allocated therefor by the base station. In the present invention, the base station can perform the selection of the appropriate aperiodic CSI feedback method on the basis of the status of carrier allocation, thereby optimizing the CSI feedback mechanism, and improving system design flexibility.
摘要:
A method, system and device for transmitting and detecting control signaling in a backhaul link are disclosed in the present application, and the application relating to the wireless communication field is used for saving time-frequency resources occupied by a base station for transmitting the control signaling on a Relay Physical Downlink Control Channel (R-PDCCH) of the backhaul link and reducing the complexity of the R-PDCCH detection by a relay node. In the present application, the base station, according to the preset correspondence between the control signaling and the R-PDCCH resource sub-regions, determines the R-PDCCH resource sub-region corresponding to the control signaling to be transmitted among a plurality of resource sub-regions included in the resource region occupied by the R-PDCCH; the control signaling to be transmitted is transmitted to the relay node by using the time-frequency resources in the determined R-PDCCH resource sub-region; the relay node acquires the location information of the R-PDCCH resource sub-region and detects the control signaling to be transmitted in the R-PDCCH resource sub-region according to the location information. With the present application, the time-frequency resources occupied by the base station for transmitting the control signaling on the R-PDCCH are saved and the complexity of the R-PDCCH detection by the relay node is reduced.
摘要:
A cell within cellular network includes user equipment (UE) that transmits data to a base station (eNB). When a UE does not have data to transmit, it may enter a low power mode (DRX) having silent intervals during which the eNB does not expect to receive a transmission from the UE and the UE is not required to monitor DL control channels from the eNB. While in DRX mode, the UE may detect an event, such as data ready for transmission or a need to request a timing adjustment (TA) update. The UE transmits a scheduling request indicator (SRI) to the eNB in response to detection of the event, wherein the SRI carries information identifying the triggering event.
摘要:
This invention extends the coverage and improves the capacity of wireless communication networks using relay nodes. The relay nodes are wirelessly connected to the base station. The base station uses the same radio access technology for a link between the base station and user equipment and between the base station and the relay node. The relay node uses the same radio access technology for a link between the base station and the relay node and between the relay node and the user equipment. The relay node supports at least a Physical Layer (PHY), a Medium Access Control (MAC) sub-layer and a Radio Link Control (RLC) sub-layer protocol.
摘要:
A transmission within a wireless cellular network may include a first and second type of information. A subframe includes a plurality of symbols, at least one symbol is designated as a data symbol and at least one symbol is designated as a reference signal symbol that contains a pre-defined reference signal. The first type of information is embedded in the data symbols. If the second type of data is expected, then the second type of information is embedded in at least one reference symbol by quadrature amplitude modulating the pre-defined reference signal. The subframe is then transmitted from one node in the network to a second node. If it is determined that the second node is not expecting the second type of information, then a discontinuous transmission (DTX) response is embedded in the reference symbol instead of the second type of information.
摘要:
A method and apparatus for configuring downlink scheduling information are used to control times of blind detection in multi-carrier system. The method includes that: a downlink carrier set and an uplink carrier set are allocated to a terminal which sends a service request; according to the bandwidth information of each carrier of the system, obtained terminal type information, currently received channel quality information fed back from the terminal, transmission modes which are allocated to each member carrier in the downlink carrier set and the uplink carrier set and determined carrier scheduling modes of the terminal, at least one member carrier in the downlink carrier set is selected as a member carrier of Physical Downlink Control Channel (PDCCH) activation carrier set; the times of PDCCH blind detection can not exceed the each sub frame maximum blind detection times supported by the terminal in the terminal type information, wherein the PDCCH blind detection is used for uplink and downlink scheduling, and the PDCCH activation carrier set is used to be provided for the terminal to perform the PDCCH blind detection.