Abstract:
Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
Abstract:
Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
Abstract:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
Abstract:
A method of cleaning a floor near a vertical surface with a mobile robot. The robot includes a cleaning assembly and a drive assembly having a first wheel and a second wheel. The method includes aligning the robot such that the first wheel and second wheel are configured to roll in a direction substantially parallel to the surface. The method includes driving the robot forward in a direction substantially parallel to the surface. The method further includes: i) turning the first wheel, proximate to the surface, with a first angular velocity, and ii) turning the second wheel, further from the surface, with a second angular velocity. The second angular velocity is greater than the first angular velocity. The robot pushes against the surface while sliding along the same surface.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a controller circuit that directs a drive of the mobile robot to navigate the mobile robot through an environment using camera-based navigation system and a camera including optics defining a camera field of view and a camera optical axis, where the camera is positioned within the recessed structure and is tilted so that the camera optical axis is aligned at an acute angle of above a horizontal plane in line with the top surface and is aimed in a forward drive direction of the robot body, and the camera is configured to capture images of the operating environment of the mobile robot.
Abstract:
A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
Abstract:
A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
Abstract:
A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
Abstract:
A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
Abstract:
A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.