Abstract:
The present invention relates to a casting method which employs rapid solidification of metal, rare-earth metal or the like, as well as to a casting apparatus and a cast alloy. A centrifugal casting method includes the steps of pouring a molten material onto a rotary body; sprinkling the molten material by the effect of rotation of the rotary body; and causing the sprinkled molten material to be deposited and to solidify on the inner surface of a rotating cylindrical mold. The axis of rotation of the rotary body and the axis of rotation of the cylindrical mold are caused not to run parallel to each other. The centrifugal casting method can attain a decrease in average deposition rate. As a result, generation of the dendritic nullFe phase or generation of a segregation phase of Mn or the like is suppressed, thereby realizing a high-performance R-T-B-type rare-earth magnet alloy.
Abstract:
The article is produced by prepositioning nonwoven reinforcement, coated h a bond enhancing compound inside of a centrifugal casting mold that is surface coated for protective shielding of the reinforcement. Molten matrix metal is then introduced into the mold while being rotated about its longitudinal axis until the molten metal completely encapsulates the reinforcement.
Abstract:
The compound roll having a shell portion made of a hard, high-alloy cast steel or iron having excellent wear resistance and resistance to surface roughening and a core portion made of a tough cast iron or cast steel, the cast iron of the shell portion having a composition consisting essentially, by weight ratio, of 1.0-3.0% of C, 2.0% or less of Si, 2.0% or less of Mn, 2.0-15.0% of Cr, 10.0% or less of Mo, 2.0-8.0% of V, the balance being substantially Fe and inevitable impurities, an average diameter of crystal grains constituting a matrix of the metal structure of the shell portion being 100 .mu.m or less in a range from a surface to a depth of 50 mm when determined by an image analysis method on the crystal grains having diameters exceeding 30 .mu.m, and the crystal grains satisfying the formula: m.sub.2 .ltoreq.1.2 m.sub.1, wherein m.sub.1 is an average diameter of the crystal grains at the surface of the shell portion, and m.sub.2 is an average diameter of the crystal grains at the depth of 50 mm, is produced by a centrifugal casting method which comprises supplying a melt for the shell portion at a temperature T satisfying the formula: Tc.ltoreq.T.ltoreq.Tc+90.degree. C., wherein Tc is a primary crystal-forming temperature of the melt for the shell portion, to a hollow cylindrical mold rotatable around its longitudinal axis, at such a speed that an average shell portion-forming speed in the mold is 2-40 mm/min.
Abstract:
A centrifugal casting of tubular form exhibiting an outer layer of a heavy (high density) metal having a high melting point, an inner layer of a lighter (low density) lower melting point metal and an intermediate zone where the two metals vary continuously and oppositely as to concentration from the inner layer to the outer layer; in the case of a tube these layers are the inner diameter (I.D.) and the outer diameter (O.D.).
Abstract:
A pipe or similar tubular member of ductile cast iron having an end casing. The thin walled casing has a curved profile at its entrance divided into two sections, of which one is formed by centrifugal casting, whereas the other, of lesser curvature, is made by hot or cold forming with a simultaneous axial compression and a radial bending directed towards the axis of the pipe. The invention is useful for forming fluid tight seals in pipelines using radial compression packings.
Abstract:
A method for introducing fluxing material (flux) into a tubular, centrifugal casting mold in the manufacture of centrifugally cast metallic tubes. The flux is injected directly into the pouring stream of the molten metal in a steady, continuous flow by the pressure from a stream of non-reactive gas such as nitrogen. The injection of the flux into the pouring stream begins only after the wetting of all the casting surfaces of the mold by the molten metal. This flux is supplied from a hopper with a variable speed control auger.
Abstract:
The installation comprises two centrifugal casting moulds which are roughly parallel to each other and are movable by rotation of a common support between a mould preparing station, a pouring station and a pipe extracting station, which stations are disposed in such maner that one of the moulds is in the axial extension of the pouring station when the other mould is in the axial extension of the extracting station and vice-versa. The two moulds are carried by rollers mounted on the common support and the latter comprises a horizontal platform which is rotatable about a central vertical axis relative to which the two moulds are symmetrically arranged.
Abstract:
A method for the centrifugal production of a metal tube having a composition which varies within the thickness of the wall of the tube, comprising the steps of pouring a mass of molten metal in a rotary mould then, before the complete solidification of said mass of metal, depositing on the mass of metal in the mould a molten slag containing addition elements, allowing the metal and the slag to solidify while continuing to rotate the mould until solidification of both of them, and removing the solidified slag.
Abstract:
A method and apparatus are provided for casting metals wherein the molten metal is cast into the top of an upright ingot mold whose axis is in a generally vertical position, the mold is capped, and then rotated so that its axis is on the horizontal position and cooling the metal in the mold while holding it with its axis in said horizontal position.