Abstract:
A liquid fuel burner system and a liquid fuel supply unit (101) for the liquid fuel burner (106) of the system are disclosed. The supply unit (101) comprises a liquid fuel feed pump (102), a compressor (104 and preferably also a motor (30) mounted on a common drive shaft (3). The system further comprises a modulatable liquid fuel metering device (103). The liquid fuel feed pump (102) is connectable to a liquid fuel conduit from a liquid fuel source, such as an oil tank. An outlet of the feed pump (102) is connected to an inlet of the liquid fuel metering device (103), which in turn is connectable to an atomizing nozzle (105) of the liquid fuel burner (106).
Abstract:
Disclosed is a pneumatically powered high-pressure and lightweight fluid pump. The pump is useful for pumping fuel for liquid rocket engines and for pumping water, such as for fire suppression. During operation of the pump, liquid is drained from a tank into a pump chamber and the chamber is then pressurized to deliver fluid. The chamber is then refilled from the main tank. An auxiliary chamber supplies fuel while the main chamber is being filled, thereby a steady stream is delivered from the pump. The auxiliary chamber is refilled from the tank while the main chamber is delivering fluid. The design results in substantial weight savings over a system in which the main tank is pressurized or a system with two pump chambers of similar size. The auxiliary chamber of the present disclosure has a smaller capacity than the main chamber. The main chamber is designed to be filled much faster than it is emptied, therefore the smaller auxiliary chamber supplies fluid only during the time while the larger main chamber is being filled.
Abstract:
A pressure washer having a frame supporting a heat exchanger for heating liquid passing therethrough under pressure for delivery to a nozzle for pressure cleaning. A burner unit is positioned for applying flame heat to the heat exchanger for heating liquid in the heat exchanger and a blower is provided for delivering combustion air under pressure to the burner unit. A fuel pump is also provided for supplying fuel under pressure to the burner unit. The burner unit is modular and remotely mounted on the frame from the blower and is readily removable and connected to the blower unit remotely through a duct. The burner unit includes a burner gun contained in a removable burner throat housing having a base with an air inlet for registration with the duct and an outer flame port for exposure of the flame from the burner gun to the heat exchanger. The fuel pump for supplying fuel to the burner is driven directly from the blower.
Abstract:
This invention materially enhances the quality of the environment and mankind by contributing to the restoration or maintenance of the basic life-sustaining natural elements, by reducing the amount of carbon monoxide introduced to the atmosphere from a combustion system, achieved by furnishing a system's approach to optimize the amount of oxygen to be chemically combined with fuel upon ignition of both allowing the correct amount of carbon to combine with the correct amount of oxygen thus fully release the thermal energy stored therein.
Abstract:
This invention materially enhances the quality of the environment and mankind by contributing to the restoration or maintenance of the basic life-sustaining natural elements, by reducing the amount of carbon monoxide introduced to the atmosphere from a combustion system, achieved by furnishing a system's approach to optimize the amount of oxygen to be chemically combined with fuel upon ignition of both allowing the correct amount of carbon to combine with the correct amount of oxygen thus fully release the thermal energy stored therein.
Abstract:
A piston-type fuel pump is provided. The fuel pump includes a housing bounding an internal cavity with a cylindrical tube disposed in the internal cavity. The cylindrical tube provides a bore extending along an axis and a piston is disposed in the bore. A spring is configured to bias the piston in a first direction along the axis. A coil is disposed about the cylindrical tube and a control circuit is disposed in the internal cavity. The control circuit is configured in electrical communication with the coil. The voltage supplied to the control circuit can be varied, with the control circuit compensating for the variable supply voltage to regulate the actuation of the coil from a de-energized state to an energized state. The piston is biased in a second direction opposite the first direction in response to the coil being actuated.
Abstract:
A heater and a method of its use are configured for use at cold operating temperatures. The heater has a supply line for transporting a volume of fuel between a fuel tank and burner. An inline heater is supplied in a supply line for the burner, and preferably is located upstream of a fuel filter for filtering the fuel so as to prevent wax condensation in the filter. The heater also has a return line that normally returns unused fuel from the burner to the heater, hence reducing the volume of fuel that needs to be heated by the heater and reducing system power requirements. The heater may be thermostatically controlled to maintain the temperature of the heated fuel to a value that is at or above a temperature required for good fuel atomization but below a flashpoint of the fuel. A valve is provided in the return line to permit diversion of the returned fuel to the fuel tank during a purge operation at initial startup.
Abstract:
Disclosed is a pneumatically powered high-pressure and lightweight fluid pump. The pump is useful for pumping fuel for liquid rocket engines and for transferring liquids from one space vehicle to another. During operation of the pump, liquid is drained from a tank into a pump chamber and the chamber is then pressurized to deliver fluid. The chamber is then refilled from the main tank. An auxiliary chamber supplies fuel while the main chamber is being filled, thereby a steady stream is delivered from the pump. The auxiliary chamber is refilled from the tank while the main chamber is delivering fluid. In order to transfer fluid from the tank to the pump chamber, the pressure in the pump chamber is maintained at a pressure higher than the vapor pressure of the fluid being pumped but lower than the pressure in the tank.