摘要:
According to an embodiment, a design method for a light-water reactor fuel assembly comprises: accumulating a determined fuel data, showing that each of a combination of p·n/N and e is feasible as the core or not, wherein N is a number of the fuel rods in the fuel assembly, n is a number of the fuel rods containing the burnable poison, p is a ratio wt % of the burnable poison in the fuel, and e is an enrichment wt % of the uranium 235 contained in the fuel assembly; formulating a criterion formula which determines whether a combination of p·n/N and e is feasible as a core or not and is formulated based on the determined fuel data; and determining whether a temporarily set composition of the fuel assembly is approved as a core or not based on the criterion formula.
摘要:
Illustrative embodiments provide for the operation and simulation of the operation of fission reactors, including the movement of materials within reactors. Illustrative embodiments and aspects include, without limitation, nuclear fission reactors and reactor modules, including modular nuclear fission reactors and reactor modules, nuclear fission deflagration wave reactors and reactor modules, modular nuclear fission deflagration wave reactors and modules, methods of operating nuclear reactors and modules including the aforementioned, methods of simulating operating nuclear reactors and modules including the aforementioned, and the like.
摘要:
The initial-core economical efficiency is improved by loading the medium enriched fuel in the peripheral or lacing it adjacent to the low enriched fuel and the highly enriched fuel. According to the present invention, in an initial core of a Boiling Water Reactor loaded with at least three types of fuel including highly enriched fuel with a fission-material content of 3.0 wt % or more, medium enriched fuel with a fission-material content of a range from 1.5 wt % or more to less than 3.0 wt %, and low enriched fuel with a fission-material content of less than 1.5 wt %, when a region of an outermost peripheral of a core occupied by the fuel having no face adjoining another fuel in a horizontal direction is defined as an outermost peripheral region, a region outside a line at 80% of a radius of a circumcircle of the core and except for the outermost peripheral region is defined as a peripheral region and the remainder is defined as an inner region, 50% or more of the fuel loaded in the peripheral region is the medium enriched fuel.
摘要:
Methods implemented by at least one electronic processor for generating pointwise fast neutron spectra may include receiving composition data; receiving source data or calculating the source data; receiving nuclear data; and calculating the pointwise fast neutron spectrum based on numerical integration using the composition, source, and nuclear data. Systems for generating pointwise fast neutron spectra may include a bus; at least one electronic processor connected to the bus; an input device connected to the bus; and a communication link connected to the bus. The at least one electronic processor may be configured to receive composition data from the input device via the bus, to receive source data from the input device via the bus or to calculate the source data, to receive nuclear data from the communication link via the bus, and to calculate the pointwise fast neutron spectrum based on numerical integration using the composition, source, and nuclear data.
摘要:
An analytical method for the initial flux and transient hot water flow parameters for a boiling water reactor with single fuel bundle. Firstly, the method is to calculate intial flux and transient hot water flow parameter based on single fuel bundle. Then, it uses supplier provided CPR (Critical Power Ratio) correlation to calculate transient CPR and calculate the whole reactor core for hot water parameters as boundary condition. Iteration is used to figure out DCPR (Delta Critical Power Ratio). The obtained limit transient is selected as the maximum from DCPR. The maximum transient DCPR combines Safety Limit Minimum Critical Power Ratio (SLMCPR) and safety margin to figure out the OLMCPR (Operating Limit Minimum Critical Power Ratio). Both the plant layout and operational thermal limit are based on OLMCPR to assure the safety of reactor core.
摘要:
In the method, a set of limits applicable to a core may be defined, and a test fresh fuel loading pattern design, to be used for loading the core, may be determined based on the limits. Reactor operation on at least a subset of the core may be simulated to produce a plurality of simulated results. The simulated results may be compared against the limits, and data from the comparison may indicate whether any of the limits were violated by the core during the simulation. A designer or engineer may use the data to modify the test fresh fuel loading pattern, creating one or more derivative fresh fuel loading pattern design(s) for simulation and eventual perfection as an acceptable fresh fuel loading pattern design for the core.