摘要:
The present invention relates to a nuclear cross section Doppler broadening method and device. The method includes: discretizing a product F(x,θ) of an average reaction cross section function σ(E,T) and an energy E on grids equally divided on a square roll N of the energy as Fkc(θ), where incident particles have mass m and energy E, target particles have mass M and Maxwellian energy distribution under a temperature T, and E(x,θ)=Eσ(E,T), Fkc(θ)=F(xk,θ), k=0,1, . . . N−1, x=√{square root over (E)}, and c are discrete superscript symbols; expanding the product F(x,θ) of the average reaction cross section function and the energy on a group of orthogonal function sets, an expansion coefficient is {circumflex over (f)}j(θ), and j is an index of the orthogonal function sets, where for the discretized product Fkc(θ) of the average reaction cross section function and the energy, an orthogonal function expansion coefficient thereof is {circumflex over (f)}jc(θ)≈{circumflex over (f)}j(θ), based on the product F(x,0) of the average reaction cross section function and the energy under a 0 K temperature, obtaining a group of coefficient weights {circumflex over (f)}jc(0), where {circumflex over (f)}jc(θ) is a function of {circumflex over (f)}jc(0); and representing F(x,θ) as a sum of an orthogonal function of the group of coefficient weights, using the group of coefficient weights {circumflex over (f)}jc(θ), calculating F(x,θ), and obtaining an average reaction cross section σ(E,T).
摘要:
Described herein are methods for analyzing an operating envelope of a nuclear reactor. An example method includes obtaining operating envelope parameters associated with a first reactor core by performing a plurality of thermo-hydraulic and thermo-mechanical calculations for the first reactor core, where the first reactor core includes a first fuel-cladding material and has a first fuel pin geometry; obtaining operating envelope parameters associated with a second reactor core by performing a plurality of thermo-hydraulic and thermo-mechanical calculations for the second reactor core, where the second reactor core includes a second fuel-cladding material and has a second fuel pin geometry; and assessing an expandable operating envelope by comparing the respective operating envelope parameters associated with the first reactor core and the second reactor core, where the first and second fuel-cladding materials are different materials. The example method can include iteratively performing the steps described herein.
摘要:
There are provided a method of synthesizing axial power distributions of a nuclear reactor core using a neural network circuit and an in-core protection system (ICOPS) using the same, in which using the neural network circuit including an input layer, an output layer, and at least one hidden layer, each layer being configured with at least one node, each node of one layer being connected to nodes of the other layers, node-to-node connections being made with connection weights varied based on a learning result, optimum connection weights between the respective nodes constituting the neural network circuit are determined through learning based on various core design data applied to the design of a nuclear reactor core of a nuclear power plant, and axial power distributions of the nuclear reactor core are synthesized based on ex-core flux detector signals measured by ex-core neutron flux detectors during operation of a nuclear reactor, so that the initial time required to perform a start-up test of the nuclear reactor can be reduced since basic data for synthesizing axial power distributions need not be separately measured in the start-up test of the nuclear reactor contrary to a conventional ICOPS, thereby improving the economic efficiency of the nuclear power plant, and so that overall nuclear reactor core design data can be used rather than actual measurement data in the start-up test (i.e., at the beginning of a period of nuclear fuel), thereby more accurately replicating axial power distributions of the nuclear reactor core throughout the overall period of the nuclear fuel.
摘要:
A dynamic characteristic analysis method of DET and RELAP5 coupling based on a universal instrumental variable method includes steps of: constructing a DET simulation model of a discrete dynamic event tree and modifying TRIP cards of an input file by adding universal instrumental TRIP variables according to state transition types of DET simulation objects, the universal instrumental TRIP variable being variable type or logical type; setting a simulation time of the RELAP5, controlling a simulation step, and analyzing an output result file of each simulation step of the RELAP5; backtracking the RELAP5 according to state transition types of DET simulation objects. The dynamic characteristic analysis method has advantages of simplifying TRIP setting process and method of DET state transition objects in an input file of the RELAP5 required for the coupling of DET and RELAP5, reducing a modeling complexity and improving a modeling efficiency.
摘要:
A system for simulating maintenance of a reactor core protection system that has at least two or more channels, includes: a simulation signal generation unit for generating a simulation state signal including a normal state or an abnormal state, a communication unit connected to each of the channels of the reactor core protection system to transmit the state signal to the channel, and a control unit for receiving a result signal output from the channel in response to the input simulation state signal and confirming whether the reactor core protection system normally determines a reactor core state by analyzing the result signal.
摘要:
There are provided a method of synthesizing axial power distributions of a nuclear reactor core using a neural network circuit and an in-core monitoring system (ICOMS) using the same, in which using the neural network circuit including an input layer, an output layer, and at least one hidden layer, each layer being configured with at least one node, each node of one layer being connected to nodes of the other layers, node-to-node connections being made with connection weights varied based on a learning result, optimum connection weights between the respective nodes constituting the neural network circuit are determined through learning based on various core design data applied to the design of a nuclear reactor core of a nuclear power plant, and axial power distributions of the nuclear reactor core are synthesized based on in-core detector signals measured by in-core detectors during operation of a nuclear reactor, thereby more accurately replicating axial power distributions of the nuclear reactor core throughout an overall period of fuel.
摘要:
A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.
摘要:
This invention relates to the monitoring and diagnosing of nuclear power plants for its thermal performance using the NCV Method. Its applicability comprises any nuclear reactor such as used for research, gas-cooled and liquid metal cooled systems, fast neutron systems, and the like; all producing a useful output. Its greatest applicability lies with conventional Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) nuclear power plants generating an electric power. Its teachings of treating fission as an inertial process, a phenomena which is self-contained following incident neutron capture, allows the determination of an absolute neutron flux. This process is best treated by Second Law principles producing a total fission exergy. This invention also applies to the design of a fusion thermal system regards the determination of its Second Law viability and absolute plasma flux.
摘要:
A plant operation assistance system includes: a data obtaining unit-configured to obtain monitoring data indicating state quantity of a plant, the state quantity being detected by a sensor; an identifying unit configured to identify, based on the state quantity, a probability distribution of the monitoring data; a model generation unit configured to generate, based on a plant parameter composed from a database including design information of the plant, a stochastic model of the plant; a data processing unit configured to assign the probability distribution to the monitoring data obtained by the data obtaining unit; and a prediction unit configured to input the monitoring data assigned with the probability distribution, into the stochastic model, and predicts a state of the plant.
摘要:
Example embodiments are directed to a method of fuel bundle design, core design, or combined fuel and core design, to ensure Pellet Cladding Interaction (PCI) related fuel failures are mitigated. More specifically, example embodiments provide fuel and/or core designs that may be determined prior to operation of a nuclear power plant, or prior to production of fresh fuel bundles. The PCI optimized fuel/core designs may include some or all of seven PCI Evaluation Methods which may be incorporated into existing nuclear reactor simulation programs. PCI optimized fuel and/or core design enhances fuel reliability, allows faster beginning-of-cycle (BOC) startups and faster middle-of-cycle (MOC) sequence exchanges to maximize plant performance, and minimizes ramping restrictions, thereby maximizing nuclear power plant performance.