Abstract:
A light emission device includes a vacuum chamber including a first substrate, a second substrate spaced from and facing the first substrate, and a sealing member between the first substrate and the second substrate. An electron emission unit is on the first substrate, the electron emission unit including a plurality of electron emission elements. A light emission unit is on the second substrate, the light emission unit including a phosphor layer. A barrier is spaced from the sealing member between the first substrate and the second substrate. At least one stud pin is fixed on at least one of the sealing member and the barrier and a getter unit is attached to the at least one stud pin, the getter unit fixed between the sealing member and the barrier.
Abstract:
A method of forming a layer (12) of getter particles (11) on a glass part (10) is described, consisting in contacting the getter particles with the glass part and radiating the particles through the glass by means of a laser, heating the particles at a temperature being greater than the softening temperature of the glass but lower than the melting temperature of the same particles.
Abstract:
A non-evaporating getter maintains the adsorbability for the residual gases, and in addition, secures sufficient characteristics particularly even when it experiences a high-temperature and low-vacuum condition in the fabrication process of a display unit. The non-evaporating getter includes a substrate having no function as a getter and a polycrystalline film arranged on the substrate which film contains Ti as the main component and has a host of voids in the interior thereof. A non-evaporating getter is made by forming a polycrystalline film containing Ti as the main component on the concavo-convex surface of the substrate which substrate has concavities and convexities on a surface thereof and has no function as a getter.
Abstract:
A vacuum container includes a getter 4 filled with a gettering material 6 for maintaining the vacuum state and includes a getter support 7 which comprises a control plate member 9, a support leg 8, and a holder 10 and the getter support 7 is arranged at the spreading direction of the getter material in order to limit the directions of the spreading of the getter material, thereby reducing the number of relevant components, simplifying the procedure of fabrication, and maintaining the degree of vacuum.
Abstract:
A cathode ray tube, which has a getter assembly (18) for providing proper vacuum conditions within the tube. The getter assembly (18) comprises a resilient strip (19) having a first end portion (23) and a second end portion (25), and is detachably secured to a high voltage contact (15). A getter cup (21) is connected to the first end portion (23). The second end portion (25) is cooperatively engaged with one, preferably two protrusions (30) for limiting lateral movements of the resilient strip (19). The protrusions (30) are provided inside the envelope (5) of the tube. This arrangement reduces the risk of obtaining a layer of getter material at the wrong location within the tube.
Abstract:
The present invention provides an FED with a getter material deposited and activated on the substrates of the faceplate and the baseplate of the FED. In one embodiment of the invention, a large FED includes a faceplate, a baseplate, and an unactivated non-evaporable getter material. The faceplate has a transparent substrate with an inner surface, and a cathodoluminescent material disposed on a portion of the inner surface. The baseplate has a base substrate with a first surface and an emitter array formed on the first surface. The baseplate and the faceplate are coupled together to form a sealed vacuum space in which the inner surface and the first surface are juxtaposed to one another in a spaced-apart relationship across a vacuum gap. The unactivated non-evaporating getter material is deposited directly on the inner surface and/or the first surface. The unactivated non-evaporating getter material may alternatively be deposited on a thin film of bonding material that is disposed on the inner surface and/or the first surface.
Abstract:
The invention relates to a vacuum tube, particularly a cathode-ray visual-display tube. In order to absorb residual gases after having formed a vacuum in the tube a getter material (barium) is used, which is evaporated onto the internal walls of the tube from a getter support. According to the invention, instead of the getter support being welded to the electron gun it is independent of the gun and is fixed rigidly to the walls of the neck of the tube, in front of the electron gun. The distribution of the getter material in the tube is thus improved, especially for tubes focused by the neck, that is to say tubes for which the internal wall (covered with graphite) of the neck serves as a cylindrical electrode for focusing the electron beam, taken to the anode potential.
Abstract:
A display tube has a getter structure which is clamped in an aperture of the magnetic shield. The getter structure and the screening cap may be of a simple construction and the getter structure can be replaced in a simple manner so that the display tube can be easily repaired. The getter structure is supported by the cone and the inner wall of the shield.
Abstract:
A gas probe starter for an electrodeless HID lamp includes a getter for removing gaseous impurities from the fill contained in the starting chamber of the gas probe starter. In a preferred embodiment, a metal foil having active getter material disposed on the surfaces thereof in the form of a sintered powder is inserted at an optimum location in the starting chamber which depends on the optimum operating temperature of the particular getter material.
Abstract:
A getter for a gas discharge tube having mercury vapor in which the getter which is active at room temperature is separated from the mercury-containing atmosphere by porous sintered bodies.