Abstract:
A vacuum container comprising: a first and second substrate of relatively the same dimensions and areas, a peripheral seal positioned about the outer periphery of each substrate for bonding the first substrate to the second substrate to form a composite stacked member; and a getter box having a vacuum aperture in one side with an evacuation tube of a given diameter opening to enclose the vacuum aperture, the tube joined to the box about the opening and having a sealed end remote from the box, the getter box having a getter source in the box hollow to absorb any residual gasses in the display hollow after the display hollow has been evacuated to a desired vacuum before sealing the end of the evacuation tube, wherein the area of the aperture is equal to or greater than π(D/2)2 where D is the diameter of the evacuation tube opening.
Abstract translation:一种真空容器,包括:具有相同尺寸和面积的第一和第二基底,围绕每个基底的外周定位的周边密封件,用于将第一基底粘合到第二基底以形成复合堆叠构件; 吸气箱在一侧具有一个具有给定直径开口的抽空管的真空孔,以封闭真空孔,该管连接到盒周围的开口并具有远离箱的密封端,吸气箱具有 在空腔中的吸气剂源被吸收在显示器空腔中的任何残余气体之后,在密封抽空管的端部之前将显示器空腔抽真空至所需的真空,其中孔的面积等于或大于(p D / 2)2其中D是抽真空管开口的直径。
Abstract:
An image display apparatus includes an envelope including a front substrate on which a display surface is provided, and a rear substrate arranged to face the front substrate. The front substrate includes a metal back formed to be overlaid on the display surface and a getter film formed of two types or more of activated metals, formed on the metal back.
Abstract:
In an image display device having in an airtight container an electron source and an image display member that receives electrons from the electron source, an evaporating getter and a non-evaporating getter are stacked in the airtight container. This makes it possible to maintain the vacuum level in the airtight container. The image display device thus obtains a prolonged life and a stable display operation.
Abstract:
A method and an apparatus of manufacturing an image displaying apparatus having an electron source substrate and a phosphor substrate. The electron source substrate is provided with an electron emitting element formed by covering with a container and by applying a voltage to an electronic conductor on the substrate. While, the phosphor substrate is provided with a phosphor thereon. The substrates are subjected to a getter processing and to a seal bonding process under a vacuum condition through a processing chamber, to complete an image forming apparatus. An improvement resides in miniaturizing and simplifying operation, and in greater manufacture speed and mass production.
Abstract:
In an image display device having in an airtight container an electron source and an image display member that receives electrons from the electron source, an evaporating getter and a non-evaporating getter are stacked in the airtight container. This makes it possible to maintain the vacuum level in the airtight container. The image display device thus obtains a prolonged life and a stable display operation.
Abstract:
An image display device of the present invention includes a container having a substrate; an electron source provided thereon; and an image display member which opposes the electron source substrate and which displays an image when being irradiated with electrons emitted from the electron source. In addition, the container further has first getters provided in an image display area which is formed between the image display member and the electron source, and ring non-evaporable second getters which are provided outside the image display area.
Abstract:
A flat panel display is provided including a baseplate for carrying a first potential, the baseplate having emitters for emitting electrons positioned thereon and a faceplate for carrying a second potential, the faceplate having phosphors thereon. The baseplate and the faceplate are hermetically sealed around the periphery to define an evacuated volume. A gate electrode for carrying a third potential causes the emitter to selectively emit electrons, which cause the phosphors to emit light and which ionize contaminant gases in the evacuated volume. A gettering material is disposed in housing connected to the evacuated volume and has a getter connection connecting the gettering material to the baseplate for applying the first potential to the gettering material, which causes the ionized contaminant gases to be attracted to and absorbed by the gettering material. The getter connection extends outside the vacuum to allow for testing of the ionized contaminant gases.
Abstract:
A fluorescent luminous tube is provided that has a getter mirror film formed in an arbitrary shape by illuminating a laser beam onto a getter. In order to form the getter film 32, the rectangular ring-less getter 31 mounted on the anode substrate 11 is irradiated with the laser beam L from the outside of the front substrate 12 and thus is evaporated. In this process, when the illumination spot of the laser beam L is moved along the scanning line 33, the rectangular getter mirror film 32 is formed around the scanning line 33. The burnt region 34, which has the same shape and size as those of the scanning line 33, is formed using the laser beam L.
Abstract:
An electron source comprises one or more electron-emitting devices, especially of surface conduction type, and is provided with means for supplying an activating substance to the device(s). The means comprises preferably a substance source and a heater or electron beam generator for gasifying the substance source. The electron source can be combined with an image-forming member (e.g. fluorescent body) to constitute an image-forming apparatus. The means is used for in situ activation or re-activation of the electron-emitting device(s).
Abstract:
The present invention provides an FED with a getter material deposited and activated on the substrates of the faceplate and the baseplate of the FED. In one embodiment of the invention, a large FED includes a faceplate, a baseplate, and an unactivated non-evaporable getter material. The faceplate has a transparent substrate with an inner surface, and a cathodoluminescent material disposed on a portion of the inner surface. The baseplate has a base substrate with a first surface and an emitter array formed on the first surface. The baseplate and the faceplate are coupled together to form a sealed vacuum space in which the inner surface and the first surface are juxtaposed to one another in a spaced-apart relationship across a vacuum gap. The unactivated non-evaporating getter material is deposited directly on the inner surface and/or the first surface. The unactivated non-evaporating getter material may alternatively be deposited on a thin film of bonding material that is disposed on the inner surface and/or the first surface.