摘要:
A light source driving device includes a power stage circuit, a first transformer circuit, a second transformer circuit, and a feedback control circuit. The power stage circuit converts a received signal to an alternating current (AC) signal, which includes a synchronizing switching bridge arm, a first bridge arm, and a second bridge arm. The synchronizing switching bridge arm has a Soft-Switching function, and forms a first full-bridge circuit with the first bridge arm and forms a second full-bridge circuit with the second bridge arm. The first transformer circuit is connected to the first full-bridge circuit, for converting the AC signal. The second transformer circuit is connected to the second full-bridge circuit, for converting the AC signal. The feedback control circuit is connected between the light source module and the power stage circuit, for controlling output of the power stage circuit.
摘要:
An exemplary inverter circuit (2) includes a full-bridge circuit (21) for converting a DC voltage into an AC low voltage, main inverse transformers (22) for converting the AC low voltage into an AC high voltage, and a feedback circuit (25). The feedback circuit includes a secondary inverse transformer (250) for converting the AC low voltage into an AC high voltage, a sampling unit (254) for sampling the AC high voltage and outputting a sampling voltage, and an integral circuit unit (205) for integrating the sampling voltage and outputting an integrated sampling voltage to the full-bridge circuit. When the AC low voltage outputted by the full-bridge circuit fluctuates, the feedback circuit sends a feedback voltage to the full-bridge circuit, and the full-bridge circuit stabilizes the AC low voltage according to the feedback voltage. The feedback voltage is in direct proportion to the fluctuation of the AC low voltage.
摘要:
A lower-cost ballast circuit for fluorescent lamps is provided. A resonant circuit is formed by a series connection of an inductor and a capacitor to operate the fluorescent lamp. A first circuit and a second circuit are coupled to switch the resonant circuit. Taking the first circuit for instance, a first resistor is connected in series with a first switch for generating a first control signal in response to a switching current of the first switch. The first switch is turned on once the first control signal is lower than a first zero-threshold. After a quarter resonant period of the resonant circuit, the first switch is turned off once the first control signal is lower than a first threshold. Therefore, a soft switching for the first switch is achieved.
摘要:
A Synchronous PWM controller realized by dead-time modulation is provided for applying to the self-oscillation Royer inverter. The proposed dead-time-modulated PWM (DTM-PWM) controller is composed of a monostable circuit and a constant-current charger (CCC). The presented switching period for the buck regulation consists of a referred sawtooth having a constant-period and a dead-time. The synchronizing strategy is conducted by modulating the dead-time according to the resonant frequency of the Royer inverter. Two kinds of the control strategies in DTM-PWM controller are explored including the down-going and up-going error voltage controls. A DTM-PWM controlled dimmable Royer inverter with two-CCFL having primary-side control is designed and realized. Two kinds of the existing controllers for the Royer inverter are also experimented and compared with the proposed DTM-PWM controller. The results of the analysis and the theoretical prediction are verified with the experiments.
摘要:
An electronic transformer for halogen incandescent lamps is equipped with a self-commutated half-bridge inverter. The half-bridge inverter contains a start circuit with a start capacitor (C3), which starts commutation of the half-bridge inverter after each mains half-wave by driving a lower half-bridge transistor (T2). The start circuit has to be suppressed while the half-bridge inverter is commutating. This is achieved according to the invention by discharging the start capacitor (C3) whenever an upper half-bridge transistor is turned on (T1). This is done by an amplifier element (V1), which is driven via a high-pass filter (C4) from the half-bridge midpoint (M).
摘要:
A compact self-ballasted fluorescent lamp (10) which is equivalent to a typical light bulb is provided The self-ballasted fluorescent lamp (10) includes a cover (14), a lighting circuit (16), an arc tube (18), a base (12) and a globe (17) and formed into a shape whose outline dimensions are nearly identical to the standard dimensions of a typical light bulb. The arc tube (18) is comprised of a plurality of U-shaped bent bulbs (31) which have an inner tube diameter ranging from 6 to 9 mm and arranged in parallel with one another. Having a bulb height ranging from 50 to 60 mm and a discharge path from 200 to 300 mm long, the arc tube (18) is designed such that the total luminous flux is not less than 700 lm with a lamp efficiency of not less than 60 lm/W when the lamp is lit at the lamp power of 7 to 15 W. An envelope (19) comprising the cover (14) and the globe (17) has a height ranging from 110 to 125 mm, including the height of the base (12).
摘要:
An inverter circuit for ballasting a gas discharge lamp having a delay circuit designed to delay regenerative control of the inverter switches until a d.c. bus has attained steady-state operating d.c. voltage. The inverter circuit includes a drive control circuit for inducing an a.c. load current. The inverter circuit includes first and second complementary switches serially connected between the bus and a reference bus. The switches are connected together at a common node through which the a.c. load current flows. A driving inductor is connected at one end to the common node and operatively connected at the remaining end to a control node. A load circuit includes a resonant inductor connected at one end to the common node, with the resonant inductor mutually coupled to the driving inductor. A resonant capacitor is serially connected between the remaining end of the resonant inductor and the reference bus. The gas discharge lamp is serially connected with a d.c. blocking capacitor across the resonant capacitor. A delay circuit, comprising a serially connected resistor and capacitor is connected across the drive control circuit.
摘要:
A circuit for switching on a partial circuit includes a first switching element (T1), a second switching element (T2 to T6), an activation circuit for the first switching element, a first diode (D1), a second diode (D2), and a third diode (D3). During operation, when the partial circuit is being switched on, first switching element (T1) is activated and second switching element (T2 to T6) is assigned no activity. The activation circuit for the first switching element (T1) includes a storage capacitor (C1) and a DIAC coupled to a control electrode of the first switching element (T1). First diode (D1), second diode (D2), and third diode (D3) are arranged such that stored energy in storage capacitor (C1) is more effectively utilized for activating the first switching element (T1), thus allowing use of a smaller capacitance for the storage capacitor (C1).
摘要:
A self-oscillating bridge circuit comprises a start circuit for rendering one of the switches conductive for the first time at the start of operation. The start circuit is configured in such a way that it does not influence the switching of the bridge switches during stationary operation.
摘要:
A resonant driving system for a fluorescent lamp having one end connected to a primary winding of a transformer. The driving system includes an inductor inserted between an input section of the resonant driving system and an internal circuit node that is connected to another end of the fluorescent lamp a converter inserted between the internal node and a voltage reference and comprising a first transistor and a second transistor of the complementary type, inserted, in series to each other, between the internal node and the voltage reference, and a control circuit connected to a secondary winding of the transformer and to the converter as well as to the control terminals of the first and second transistors of the converter, wherein the control circuit comprises an inductor connected to a resistor that is connected to the control terminals of the first and second transistors through a first and a second capacitor respectively.