Abstract:
A node unit of distributed antenna system, the node unit comprises a delay measuring part configured to transmit a first test signal for delay measurement to an upper adjacent node unit and detect the first test signal looped back via the upper adjacent node unit and measure a round trip delay between the node unit and the upper adjacent node unit, and a delay providing part disposed on a signal transmission path through which a second test signal for delay measurement, to be transmitted from a lower adjacent node unit, is to be looped back to the lower adjacent node unit, and configured to provide a delay corresponding to the round trip delay.
Abstract:
Provided are a communication node which comprises a signal monitoring device configured to receive a plurality of communication signals transmitted from two or more base stations, and to monitor a bandwidth of each of the received communication signals, a frame setter configured to reset a frame structure by merging at least some of blocks in a preset frame structure according to a result of the monitoring, and a framer configured to frame the plurality of communication signals into one frame by including the plurality of communication signals in a block corresponding to a bandwidth of each of the plurality of communication signals according to the reset frame structure.
Abstract:
A fronthaul multiplexer according to one aspect of the present invention combines uplink packets in a compressed state that is received from two or more radio units so that the uplink packets are accumulated and combined immediately when received or the uplink packets are recompressed using a compressing method with high compression efficiency when stored in a memory in order to reduce a use amount of memory.
Abstract:
The present disclosure relates to a method of reducing a Peak to Average Power Ratio (PAPR) in a communication device, and more particularly, to a method of Crest Factor Reduction (CFR) processing of a signal in order to reduce a PAPR in a communication device such as a repeater. The communication device includes: a first CFR module configured generate a first processed signal by CFR processing an original signal; and a second CFR module configured generate a second processed signal by CFR processing the first processed signal, wherein the first processed signal is generated using a first sampling rate, and the second processed signal is generated using a second sampling rate. According to the disclosure, even a communication device with a low sampling rate may effectively remove a peak component of an input signal.
Abstract:
A method of operating a repeater comprises detecting a synchronization signal from a received communication signal, identifying a time division duplex (TDD) switching pattern based on a power change of the communication signal over time and switching an uplink operation and a downlink operation of the repeater based on the detected synchronization signal and the TDD switching pattern.
Abstract:
The disclosure provides a method of operating a distributed antenna system (DAS) interworking with a spectrum sharing system (SSS) including: transmitting, by a node unit of the DAS, DAS information to a management system entity (MSE); generating, by the MSE, linkage information based on the DAS information and radio service device (RSD) information received from at least one RSD of the SSS; transmitting, by the MSE, the interworking information to a system controller of the SSS; receiving, by the MSE, allocation information including a result of allocating shared radio resources to the DAS and the at least one RSD, respectively, according to the interworking information from the system controller; transmitting, by the MSE, the allocation information to the node unit; and operating, by the node unit, according to the allocation information.
Abstract:
Provided are a base station signal matching device, and a base station interface unit and a distributed antenna system including the base station signal matching device. The base station signal matching device included in a distributed antenna system receiving a base station signal from at least one base station and transmitting the base station signal to at least one user terminal includes: a signal matching unit receiving a first base station signal from a corresponding base station and matching the first base station signal to be suitable for signal processing of the distributed antenna system; and a signal processing unit receiving the matched first base station signal from the signal matching unit, receiving a matched second base station signal from another base station signal matching device, and combining the matched first base station signal with the matched second base station signal.
Abstract:
A method of operating a repeater comprises selecting some of adaptive filter coefficients among a plurality of adaptive filter coefficients of an adaptive filter used for interference cancellation, based on the size of a coefficient, generating a predicted interference signal using the selected adaptive filter coefficients and generating an interference-canceled communication signal from a received signal using the generated predicted interference signal.
Abstract:
Provided are a synchronization signal detection method performed by a receiver including a processor and a memory, the synchronization signal detection method comprises calculating a PSS correlation value for a primary synchronization signal (PSS) included in a received signal, detecting a frequency offset for the PSS and a timing offset for sampling timing of the received signal and detecting the PSS based on the PSS correlation value, the frequency offset, and the timing offset.
Abstract:
Provided is an optical communication system configured as an optical ring network including: a first optical communication device configured to transmit a first optical signal having a first wavelength in a first direction, and to transmit a second optical signal having a second wavelength in a second direction opposite to the first direction; and a second optical communication device configured to generate a first reflected signal by reflecting the first optical signal when the first optical signal is received, to generate a second reflected signal by reflecting the second optical signal when the second optical signal is received, and to transmit the first and second reflected signals to the first optical communication device, wherein the first optical communication device analyzes a connection state of the second optical communication device based on the first and second reflected signals.