Abstract:
An optical transmission device which reduces optical noise in an optical transmission system. The optical transmission device includes a core light amplifying unit, and a first buffer light amplifying unit for amplifying a first signal light from a first transmission path and an amplified second signal light from the core light amplifying unit. The first buffer light amplifying unit supplies the core light amplifying unit with the first signal light, and supplies the first transmission path with the amplified second signal light. Also provided is a second buffer light amplifying unit for amplifying a second signal light from a second transmission path and an amplified first signal light from the core light amplifying unit. The second buffer light amplifying unit supplies the core light amplifying unit with the second signal light, and supplies the second transmission path with the amplified first signal light.
Abstract:
An optical transmission system accomplishes optical transmission to a long distance by combining a multiplexing line terminal with optical amplifiers, linear repeaters, and regenerators with optical amplifiers combined together. The system also accomplishes the optical transmission to a short distance by directly connecting the linear terminals therebetween, with an electric-to-optic converter replaced by an electric-to-optic converter having a semiconductor amplifier, with an optic-to-electric converter by an optic-to-electric converter having an avalanche photodiode as light receiver, an with no use of any optical booster amplifier and optical preamplifier in the multiplexing line terminal. With these, the optical transmission system can be easily constructed depending on the transmission distance required.
Abstract:
A compressed sheet comprises: base fibers constituted by inorganic fibers other than asbestos, or organic fibers, or a combination of both; a rubber; rubber chemicals; and fillers. In the compressed sheet a material with both smoothing and reinforcing effects is exposed at least to one of the surfaces of the compressed sheet. A method of manufacturing a compressed sheet comprises the steps of processing a composition for forming the compressed sheet by feeding it into a pair of rolls comprising a hot roll and a cold roll, thereby laminating the composition into a sheet-shaped material on the hot roll, and then peeling off the sheet-shaped laminated material. In this method the composition is fed into the rolls such that a material with both smoothing and reinforcing effects is exposed at least to that surface of the sheet-shaped laminated material which faces the cold roll.
Abstract:
A method of producing a metal gasket includes steps of alkaline cleaning a metal plate, coating a non-rinse chemical for chromate conversion of surfaces of the metal plate and drying to form chromate films, coating an adhesive on the chromate films and drying or baking the adhesive to form adhesive layers, and coating rubber compound of a sheet-like or an amorphous mixed compound to a predetermined thickness on the adhesive layers and heating and vulcanizing the rubber compound to form rubber coated metal plate. A metal gasket manufactured in this manner has a high bonding power of the rubber layers to the metal plate to obtain an improved durability for long use.
Abstract:
In a thin film ferromagnetic resonance tuned filter is disclosed which comprises a ferrimagnetic thin films, input and output signal transmission lines respectively coupled with the ferrimagnetic thin films, and a magnetic circuit for applying a DC magnetic field to the ferrimagnetic thin films, the present invention expands the variable frequency band by forming extensions each extending from the signal transmission line so that the distance from the coupling point of the signal transmission line coupled with the corresponding ferrimagnetic thin film to the grounded end thereof is 1/10 or above and less than 1/4 the wavelength of a wave transmitted in the transmission lines at the upper limit frequency of a tuning frequency band. Further the deterioration of the isolation characteristics is suppressed by bending the extended portions not to form parallel portions to another transmission line.
Abstract:
A thermal displacement compensating apparatus capable of compensating for the thermal displacement of the main spindle of a machine tool is disclosed. A feed back scale and a measuring head are provided in order to detect the actual position of the front end portion of the spindle head. Furthermore, a distance sensor is provided for detecting the thermal extension of the main spindle with respect to the spindle head. The output signal from the distance sensor is used for modifying the present position detected by the measuring head or modifying a commanded target position. With this arrangement, a tool attached to the front end portion of the main spindle is moved to the commanded position regardless of the thermal displacement of the spindle head and the main spindle. Another type of compensation apparatus is also disclosed, wherein the measuring head is mounted on a mounting rod, and the mounting rod is automatically moved so as to maintain the distance between the measuring head and the front end surface of the main spindle at a constant distance. With this arrangement, actual position of the front end surface of the main spindle can directly be detected regardless of the thermal displacement of the spindle head and the main spindle.
Abstract:
A tuned oscillator is disclosed which consists of an active element for oscillation, a ferrimagnetic resonant element connected to part of feedback of the active element, and a matching circuit connected to the active element. The matching cirucit is designed to reflect the fundamental wave produced by the ferrimagnetic resonant element and active and pass the second harmonic wave. Consequently, the magnetic circuit has its load reduced in applying a D.C. magnetic field necessary for frequency tuning to the ferrimagnetic resonance element.
Abstract:
A ferromagnetic resonator is disclosed, in which perpendicular ferrimagnetic resonance of thin film YIG is utilized. The resonator comprises a ferrimagnetic YIG thin film and a microstrip line coupled to the YIG thin film operative in a bias magnetic field applied perpendicular to a major surface of the YIG thin film. The YIG thin film disk has a magnetization distribution of magnetostatic mode, and the microstrip line is designed to generate a high-frequency magnetic field distribution similar to the magnetization distribution of the uniform mode (1, 1).sub.1. In such arrangement, coupling between the high-frequency magnetic field and magnetization of high sprious mode is reduced.