Abstract:
A method for signaling storm reduction is disclosed, comprising concentrating a plurality of signaling messages from a radio access network node to a core network node at a signaling concentrator; and processing the plurality of signaling messages with a mobile device identifier rule, at a rate equal to or greater than a line rate of a link from the radio access network to the signaling concentrator, wherein processing the plurality of signaling messages further comprises determining whether to drop each of the plurality of signaling messages.
Abstract:
A system is disclosed, comprising: a wireless fronthaul access point coupled to a radio mast and in communication with a remote baseband unit, the wireless fronthaul access point further comprising a first millimeter wave wireless interface; and an antenna-integrated radio for providing access to user equipments (UEs), mounted within line of sight on the radio mast with the wireless fronthaul access point, the antenna-integrated radio further comprising: a second millimeter wave wireless interface configured to receive the digital I and Q signaling information from the remote baseband unit wirelessly via the wireless fronthaul access point, wherein the wireless fronthaul access point thereby wirelessly couples the remote baseband unit and the antenna-integrated radio.
Abstract:
Systems and methods relating to full duplex mesh networks are disclosed. In one embodiment, a mesh network comprising a first base station may be disclosed, the first base station comprising: a first transceiver for transmitting and receiving to and from the first base station on the single frequency band; and a second transceiver for transmitting and receiving to and from a second base station on the single frequency band, each transceiver of each transceiver node performing self-interference cancellation to send and receive full duplex data on the single frequency band at substantially the same time, thereby enabling the creation of a mesh network with at least one transceiver node having both access and backhaul using only the single frequency band.
Abstract:
A method for X2 interface communication is disclosed, comprising: at an X2 gateway for communicating with, and coupled to, a first and a second radio access network (RAN), receiving messages from the first RAN according to a first X2 protocol and mapping the received messages to a second X2 protocol for transmission to the second RAN; maintaining state of one of the first RAN or the second RAN at the X2 gateway; executing executable code received at an interpreter at the X2 gateway as part of the received messages; altering the maintained state based on the executed executable code; and receiving and decoding an initial X2 message from the first RAN; identifying specific strings in the initial X2 message; matching the identified specific strings in a database of stored scripts; and performing a transformation on the initial X2 message, the transformation being retrieved from the database for stored scripts, the stored scripts being transformations.
Abstract:
A gateway for X2 interface communication is disclosed, comprising: an X2 internal interface for communicating with, and coupled to, a first and a second radio access network (RAN); an X2 language processing module for receiving messages from the first RAN according to a first X2 protocol and mapping the received messages to a second X2 protocol for transmission to the second RAN; and an X2 external interface for communicating with, and coupled to, a gateway in a wireless telecommunications core network. The gateway may further comprise a database for storing a plurality of rules for performing mapping at the X2 language processing module, and a state machine for maintaining state of one of the first RAN or the second RAN, and an interpreter for executing executable code received as part of the received messages and altering the state machine based on the executed executable code, and a regular expression pattern matcher for identifying patterns in the received messages that are present in the first X2 protocol but not present in the second X2 protocol.
Abstract:
A method for scheduling resources in a network where the scheduling activity is split across two nodes in the network is disclosed, comprising: receiving, from a local scheduler in a first radio access network, access network information at a global scheduler; accessing information regarding a second radio access network allocating, at the global scheduler, resources for secondary allocation by the local scheduler; applying a hash function to map the allocated resources for secondary allocation to a set of hash values; and sending, from the global scheduler, the set of hash values to the local scheduler.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
Systems and methods for a self-calibrating and self-adjusting network are disclosed. In one embodiment, a method is disclosed, comprising: obtaining a signal strength parameter for a mobile device at a base station; obtaining a position of the mobile device at the base station; and associating the position and the signal strength parameter in a database. The method may further comprise one or more of: adjusting transmission power for the mobile device at the base station based on the associated position and signal strength parameter; computing the position of the mobile device at the base station; calculating an average of the signal strength parameter over a time window, and storing the average associated with the position. The signal strength parameter may include at least one of a block error rate (BLER) and a radio signal strength indicator (RSSI), and the position may be a global positioning system (GPS) position.
Abstract:
A gateway server situated between a radio access network and a core network is disclosed that includes a radio access network packet interface, a load management module for monitoring load of a management server in the core network coupled to the radio access network packet interface, a packet forwarding module for forwarding requests to the management server coupled to the load management module, and a local packet core module coupled to the load management module and the packet forwarding module, the local packet core module being configured to respond to a mobile device, when an overload is detected at the management server, with a management server message requesting that the mobile device try again at a later time.