Abstract:
A Solar Access Measurement Device (“SAMD”) located at a predetermined position is disclosed. The SAMD may include a skyline detector enabled to detect a skyline of a horizon relative to the SAMD, an orientation determination unit enabled to determine the orientation of the skyline detector, and a processor in signal communication with the skyline detector and orientation determination unit.
Abstract:
An automated method causes a terrestrial solar cell array to track the sun. The solar cell system may include motors that adjust a position of the array along different respective axes with respect to the sun. An alignment analysis procedure, e.g., a find sun routine, is performed to ensure that the solar cell system is properly aligned with the sun during solar tracking. This procedure may sweep the solar cell system along determined paths (e.g., azimuth and elevation paths) while measuring an output parameter indicative of system performance. The measured data is analyzed to determine if the solar cell system is in misalignment in which case the solar cell system is moved into proper alignment. The alignment procedure may be implemented on a periodic basis or using triggers, and maybe automatically executed or manually executed.
Abstract:
An automated method causes a terrestrial solar cell array to track the sun. The solar cell system includes motors that adjust a position of the array along different respective axes with respect to the sun, wherein a first motor adjusts the inclination angle of the array relative to the surface of the earth and a second motor rotates the array about an axis substantially perpendicular to that surface. The method includes (a) using a software algorithm to predict a position of the sun at a future time; (b) using a computer model to determine respective positions for the motors corresponding to the solar cell array being substantially aligned with the sun at the future time; and (c) activating and operating the motors at respective particular speeds so that at the future time the solar cell array is substantially aligned with the sun.
Abstract:
A method of determining usable area of a structure for solar energy production may include obtaining a three-dimensional model of a structure and obstructions associated therewith, and performing a shading analysis using the obtained three-dimensional model to obtain a usable area of the structure. A method of providing solar information for a structure using a Web portal may include providing an interactive map, receiving a user selection of a structure located on the interactive map, and providing solar information for the selected structure, wherein the solar information is based at least in part on a usable area obtained by performing a shading analysis using a three-dimensional model of the structure and obstructions associated therewith. A system for providing an interactive Web portal may include a database including solar information regarding a structure, and a server configured to access the database to retrieve the solar information and provide the Web portal.
Abstract:
A control system or controller solar module array may be operated by (i) programmatically determining, for a given time period, a demand for an output of the solar module array by one or more energy consuming resources at the target location; and (ii) affecting an efficiency of the solar module array based at least in part on the determined demand.
Abstract:
A system and method for identifying the solar potential of rooftops. In one embodiment, solar-potential criteria and three-dimensional spatial data and tabular data, for a selected area including parcels on which the rooftops are located, are entered into a geographic information system. Three-dimensional aerial data of the selected area, including the rooftops in the selected area, is collected. Solar azimuth and altitude angles are calculated for regular intervals to generate shadow simulation data representing shadows cast onto the rooftops by obstructions. The shadow simulation data is intersected with the XYZ coordinates of the rooftop shapes, as determined from the aerial data, to generate rooftop shade patterns for specific intervals over a specific period of time. The tabular data and the rooftop shade patterns are then used to determine addresses and per-parcel specifications of buildings having said rooftops meeting the solar-potential criteria.
Abstract:
An apparatus receives a digital image of a sun trace chart having time gradient lines and a sun trace extent line for a site. A selector defines on a display points along the solar trace extent line to define a solar opportunity region. An adjuster adjusts the digital image based on the magnetic declination of the site. The solar exposure potential is determined based on the proportion of solar trace extent lines within solar opportunity region and potential solar exposure. Site adjustments to increase solar energy potential are facilitated. A method of evaluating a site for solar energy potential is disclosed. A solar exposure device for recording and analyzing a solar trace is disclosed.
Abstract:
A Solar Access Measurement Device (“SAMD”) located at a predetermined position is disclosed. The SAMID may include a skyline detector enabled to detect a skyline of a horizon relative to the SAMD, an orientation determination unit enabled to determine the orientation of the skyline detector, and a processor in signal communication with the skyline detector and orientation determination unit.
Abstract:
A computer which functions by a performance prediction program for a ground source heat pump system of the present invention and a performance prediction system constructed thereby include a dimensionless distance calculating means, a first dimensionless time calculating means, a second dimensionless time calculating means, a boundary time acquiring means, an underground temperature change calculating means, and a tube surface temperature change calculating means. The performance prediction program and performance prediction system can be applied to the design of heat exchange system by obtaining predicted underground temperature data for the ground source heat pump system with high accuracy and predicting the performance for the ground source heat pump system based on the resulting underground temperature changes, etc., considering the use of a plurality of buried tubes, underground temperature change patterns for buried tubes placed at different intervals, and the use of U-shaped tube heat exchangers.
Abstract:
A computer which functions by a performance prediction program for a ground source heat pump system of the present invention and a performance prediction system constructed thereby include a dimensionless distance calculating means, a first dimensionless time calculating means, a second dimensionless time calculating means, a boundary time acquiring means, an underground temperature change calculating means, and a tube surface temperature change calculating means. The performance prediction program and performance prediction system can be applied to the design of heat exchange system by obtaining predicted underground temperature data for the ground source heat pump system with high accuracy and predicting the performance for the ground source heat pump system based on the resulting underground temperature changes, etc., considering the use of a plurality of buried tubes, underground temperature change patterns for buried tubes placed at different intervals, and the use of U-shaped tube heat exchangers.