Abstract:
An electro-optic modulator structure for particular use in narrowband optical subcarrier systems. A traveling wave is established across the active region of the device, instead of a standing wave. This is accomplished through the use of a directional resonator structure that prevents reverse-traveling waves from being established within the resonator. Hence, the electric field is applied to the traveling optical wave in a similar fashion to a traveling-wave modulator, except that the traveling wave has a much greater amplitude due to the build-up of energy inside the resonator. Since the modulator is operated in a traveling-wave fashion, it can be tuned to operate at any frequency using tuning elements, regardless of the length of the active region. Furthermore, the microwave and optical signals can be velocity-matched to mitigate optical transit time effects that are normally associated with a resonant modulator utilizing a standing-wave electrode structure.
Abstract:
A low voltage modulation signal can be realized while reducing reflection and radiation of a high frequency modulation signal in an optical modulator. The optical modulator includes an electrooptic effect element having a signal electrode and a ground electrode thereupon each provided with a pad, and varying optical phase by the electrooptic effect and; a relay substrate constituted of a dielectric wafer on which a coplanar waveguide connected to the signal electrode pad and the ground electrode pad on the electrooptic effect element is formed; and a connector having a center conductor and an external conductor respectively connected to the coplanar waveguide of the relay substrate, and supplying a modulation signal of microwave band to the signal electrode of the electrooptic effect element, wherein, when the modulation signal includes a component of 30 GHz and a pad space between the signal electrode pad and the ground electrode pad of the electrooptic effect element is defined as S nullnullmnull and a pad height is defined as H nullnullmnull, the pad height is no greater than 300 and the relation is set asnull0.002H2null1.3Hnull160
Abstract:
An optical waveguide device 1A has an optical waveguide substrate 10A and a supporting substrate 6 supporting the substrate 10A. The substrate 10A has a main body 4 made of an electrooptic material and having first main face 4a and a second main face 4b, an optical waveguide 3 formed in or on the main body 4 and an electrode 2A, 2B or 2C formed on the side of the first main face 4a of the main body 4. The supporting substrate 6 is joined with the second main face 4b of the main body 4. A low dielectric portion 11 with a dielectric constant lower than that of the electrooptic material is formed in the supporting substrate 6.
Abstract:
A traveling wave optical modulator comprising a substrate made of a ferrodielectric electro-optic single crystal and having a pair of opposing main planes, an optical waveguide formed on a side of one of the main planes of the substrate, and a pair of electrode films which apply a voltage for modulating a light transmitting through the optical waveguide and between which the optical waveguide is located, wherein the thickness of each of the electrode films is not less than 20 &mgr;m and a width of a gap between a pair of the electrode films is not less than 25 &mgr;m.
Abstract:
This is an electro-optic modulator having an electro-optic substrate such as lithium niobate, an optical waveguide defined within the substrate, an electrode structure including a microwave transmission line elevated from the substrate by conductive legs. In one embodiment, a low-dielectric constant buffer layer is disposed between the substrate and the transmission line. The conductive legs extend from the transmission line to a surface of the substrate toward the waveguide, through the buffer layer. The microwave transmission line is elevated from the substrate at a distance such that the electrical propagation velocity is at a maximum. The high electrical velocity is offset by a loading capacitance introduced by the conductive legs which slows the electrical velocity down on the transmission line to match the optical velocity. Pairs of opposing conductive legs provide a strong electric field for modulating the optical signal.
Abstract:
An optical device includes a semiconductor optical modulator element (46) which is connected to an end of a signal line (42) in form of a microstrip high-frequency line and whose other electrode is connected to a ground electrode (48) by a bonding wire (50). The signal line (42) includes first and second line portions (42a, 42b). The first line portion (42a) nearer to the entrance of a high-frequency signal has a width W1 determined to adjust its characteristic impedance to 50.OMEGA. and a length L1 equal to an integer multiple of 1/4 of its own guide wavelength. The second line portion (42b) has a width W2 determined to adjust its impedance to an intermediate value between the impedance of the optical modulator element 46 and the impedance of the first line portion (42a), and a length L2 equal to an integer multiple of 1/4 of its own guide wavelength.
Abstract:
An improved high-speed external optical modulator, modulated by RF waves, which velocity matches the RF waves with the optical waves is disclosed. The apparatus includes a lithium niobate substrate on which is formed an optical waveguide, electrically floating electrodes, a low dielectric buffer layer and electrodes carrying the modulating RF energy. At least one floating electrode may comprise a series of spaced electrode segments for enhanced performance at high frequencies.
Abstract:
A Mach-Zehnder interferometer type modulator, constructed of first and second optical waveguides, first and second electrodes cooperating with the same, and a driving voltage source, wherein a driving voltage source is constructed of first and second driving units which drive independently the first and second electrodes in accordance with a data input and wherein the first and second driving units apply first and second driving voltages, individually determined, to the first and second electrodes.