Abstract:
A method of slow, or process, scan direction spot registration or position control in an optical output device, such as a raster output scanner (ROS), may be facilitated by interposing in the image path an electro-optic element whose angular dispersion varies for a given wavelength as a function of the electrical bias applied to it. By orienting the electro-optic element such that dispersion control is perpendicular to the fast or line scan direction of the ROS, varying the electrical bias applied to it varies the dispersion in the slow scan direction. The electro-optic element may be, for example, a prism of AlGaAs. Bias applied to the electro-optic element may be in response to the output of a means for detecting and quantifying such positional errors and/or in response to predetermined correction information output from a processor controlled memory unit or the like. Spot position for single or multiple beam optical output device may be achieved.
Abstract:
A scanner system includes a light source for producing a light beam and a director that directs the light beam to a spot on a surface to be scanned moving the spot across the surface along a scan line of predetermined length in a series of scan cycles. The scanner system has a pixel clock for producing a train of clock pulses during each of the scan cycles configured so that some of the clock pulses are spaced apart by a first time interval and others are spaced apart by a longer second time interval in order to maintain timing of the clock pulses according to spot position along the scan line in a manner that compensates for scanner non-linearity in order to reduce pixel position distortion. The pixel clock includes a reference clock for producing a train of reference pulses having a period such that at least M reference pulses occur during the time the spot moves from a first end of the scan line to a point along the scan line that is a distance from the first end of the scan line equal to L/N, where L is the length of the scan line, M is a predetermined integer, and N is a predetermined integral number of pixel positions along the scan line. The first time interval represents the occurrence of M reference pulses and the second time interval represents the occurrence of M+I reference pulses, where I is an integer.
Abstract:
A laser beam emitted from a laser is detected by a photosensor, and a flip-flop is preset by a detection signal output from the photosensor. A timer is driven in accordance with a preset output from the flip-flop, and a timer output is generated after a lapse of a predetermined period of time. The laser is again driven by the timer output to emit a laser beam. While, another timer is driven in response to a front edge of the preset output of the flip-flop to generate a horizontal synchronizing signal.
Abstract:
An improved image plate scanner (10) for scanning a circular videodisk (12) exposed by X-rays, with image elements (40) spaced a distance (radius R) away from the image plate central point. The image plate is scanned with laser beams. A videodisk carrier (13) on which the image plate is detachably mounted, is drivable with the aid of an electromotor (11), with adjustable rotation speeds. An image element scanning unit (15;115) is radially displaceable across the image plate by means of a drive assembly (14,18) with presettable speed of advance. A laser light supply (42) and an optical image element scanning facility (30a) are parts of an optoelectronic measured value transmission unit, as are a photomultiplier (36) and a signal conditioner. During the light scanning for recording the image stored on the image plate maximum light yield is obtained for the emitted light. The image plate scanner is constructed in a compact manner so as to facilitate operation. The image element scanning unit (15;115) can be guided across the image plate while scanning each image element ( 40) at the same tangential speed, provision being preferably made for the laser light supply (42) to include a collector lens (44), two laser light sources (43a,43b), and an optical filter (46) by means of which the laser light is focussed. The drive shaft (18) of the electromotor (11) is connected by a gear drive to a power spindle (26). The image element scanning unit (15) is translatorily displaceable radially over the image plate (12).
Abstract:
Print heads are formed with spaced subheads having nozzles such that all of the lines or pixel rows on a print medium such as a sheet of paper are printed by scanning of the print head along the face of the sheet. The head structures include three subheads, each having nozzles for printing one or more adjacent lines with the subheads being spaced the same number of lines apart as the number of lines each prints; and three subheads spaced the equivalent of seven lines apart, each subhead having three nozzles spaced at the equivalent of alternate lines. The heads are advanced between scans by an equivalent number of lines generally equal to the number of nozzles in the head, whereby all print lines are addressed only once. Apparatus for printing includes the use of pointers in registers to keep track of head structure and location on a print medium for calculating print addresses. A partial page memory is used which wraps around to the beginning from the end. A positive printer carriage position encoder uses an index marker located in the middle of a strip of incremental markers. Sensing of the index marker resets an up/down counter with a value that gives a positive value for all count conditions.
Abstract:
An apparatus and method of reducing pixel clock jitter in a raster scanner having a oscillator which generates a pixel clock signal and a start of scan sensor for generating a start of scan signal, includes the generation of an inverted pixel clock signal and an inverted start of scan signal. Based on which of the pixel clock signal or the inverted pixel clock signal has a rising edge closer to the start of scan signal, one of the pixel clock or inverted pixel clock signal is selected to replace the original pixel clock signal. Further selections are prevented from occurring until a subsequent start of scan signal is detected.
Abstract:
A composite light source unit including a plurality of semiconductor lasers disposed in a housing, a plurality of collimator optical systems for converting the laser beams to parallel laser beams, respectively, and a combining optical system for combining all the laser beams except one as a group of laser beams having close, parallel optical axes, respectively, extending in a direction different from the direction of said one laser beam, whereby said one laser beam and the group of laser beams are emitted from the housing in different directions. Alternatively, the combining optical system combines the laser beams as a group of laser beams having close, parallel optical axes, respectively, and emits the group of laser beams out of the housing, one of the laser beams emitted out of the housing having a different optical property than that of the other laser beams. Said one laser beam can easily be separated from the other laser beams, and will be used as a synchronizing beam in a scanning device.
Abstract:
A synchronizing signal generating system for a laser scanner comprises a source for emitting a first laser beam for scanning and a second laser beam for synchronization of scans by the first laser beam, a deflector for causing a scan of a medium by the first laser beam and a scan of a grating by the second laser beam, a converging optical system for converging the second laser beam transmitted through the grating, a light receiving system for receiving the second laser beam converged by the converging optical system and for generating a reference pulse signal, a circuit for controlling the source responsive to the reference pulse signal so as to synchronize a scan timing of the first laser beam and comprising a PLL circuit for generating a synchronizing signal which has a frequency N times a frequency of the reference pulse signal in response to the reference pulse signal and a control circuit for controlling a value of N depending on the recording density, and a driving circuit for driving the source of synchronism with the synchronizing signal depending on input information data.
Abstract:
An image forming apparatus for forming an image by deflecting a light beam signal modulated by an image signal onto a photoconductive element by a polygonal mirror to electrostatically form a latent image and developing the latent image. A main scanning synchronization detector is located in the vicinity of the photoconductive element for setting up synchronization in the main scanning direction. A displacement detector detects a distance over which the photoconductive element has been displaced over a period of time associated with a subscanning pitch. Correcting control is driven in response to the output signals of the main scanning synchronization detector and displacement detector. The light beam signal is so deflected in the subscanning direction as to correct an error in the subscanning pitch.
Abstract:
A very stable deflection system usable with a beam of radiant energy incorporates a self-resonant scanning galvanometer located within an evacuated chamber. The chamber has a hermetic radiant energy transmissive window. An exterior laser source provides a beam of monochromatic light which is directed onto the mirror of the galvanometer. Repetitive deflection of the galvanometer mirror at a predetermined frequency results in the beam being projected onto a target so as to form a very stable and repeatable scanning line. Movement of the target provides a multi-line raster on which an image can be formed.