Abstract:
A new method is provided for the creation of a copper seed interface capability. A first seed layer of copper alloy and a second seed layer of copper is provided over an opening in a layer of dielectric. The opening is filled with copper, the first and second seed layers are annealed.
Abstract:
A damascene structure for semiconductor devices is provided. In an embodiment, the damascene structure includes trenches formed over vias that electrically couple the trenches to an underlying conductive layer such that the trenches have varying widths. The vias are lined with a first barrier layer. The first barrier layers along the bottom of vias are removed such that a recess formed in the underlying conductive layer. The recesses formed along the bottom of vias are such that the recess below narrower trenches is greater than the recess formed below wider trenches. In another embodiment, a second barrier layer may then be formed over the first barrier layer. In this embodiment, a portion of the conductive layer may be interposed between the first barrier layer and the second barrier layer.
Abstract:
A method for eliminating noise interference and acoustic noise by a printed circuit board ground plane layout is disclosed. The method is applied to a circuit system having multiple outputs, wherein the circuit system has a first power converting module, a second power converting module and a printed circuit board. The first power converting module and the second power converting module respectively includes a first ground pin group and a second ground pin group. The method includes the steps of (a) connecting each ground pin of the first ground pin group to a respective solder point and connecting each solder point to a first node, and connecting each ground pin of the second ground pin group to a respective solder point and connecting each solder point to a second node, and (b) connecting the first node and the second node to a common node and connecting the common node to a solder point of a common ground terminal on the printed circuit board ground plane.
Abstract:
A new method is provided for the creation of a barrier-free copper interconnect. A dual damascene structure is created in a layer of dielectric, a thin metal barrier layer is deposited. The metal barrier layer is oxidized, two layers are then deposited with the first layer comprising doped copper and the second layer comprising pure copper. The dual damascene structure is filled with copper, a thermal anneal is applied, stabilizing the deposited copper filling the dual damascene structure and forming metal oxide of the doped minority element. Excess copper is then removed from the dielectric.
Abstract:
A new method is provided for the creation of a barrier-free copper interconnect. A dual damascene structure is created in a layer of dielectric, a thin metal barrier layer is deposited. The metal barrier layer is oxidized, two layers are then deposited with the first layer comprising doped copper and the second layer comprising pure copper. The dual damascene structure is filled with copper, a thermal anneal is applied, stabilizing the deposited copper filling the dual damascene structure and forming metal oxide of the doped minority element. Excess copper is then removed from the dielectric.