Abstract:
The present invention discloses a pharmaceutical composition of treating multidrug resistance cancer, comprising a citrus methoxyflavone and a chemotherapeutic drug, in which the citrus methoxyflavone is nobiletin. A method of treating multidrug resistance cancer comprising administrating citrus methoxyflavone and a chemotherapeutic drug is also disclosed.
Abstract:
A quinonemethide triterpenoid is administered to subjects with multidrug-resistant cancer, in particular a cancer with enhanced expression and/or functional activity of ABC transporter proteins such as P-glycoprotein and/or an apoptosis-deficient, in particular p53-, Bax- or Bak-deficient, cancer, i.e. specific subgroups of subjects with cancer. The quinonemethide triterpenoid is suitable to treat cancer allowing for an accumulation of cytotoxic or therapeutic compounds in the cells while having exceptionally increased cytotoxic activity towards the multidrug-resistant cancer cells and while allowing for an increased activity of chemotherapeutic compounds. Methods for specifically targeting cancer cells with multidrug-resistance and methods for potentiating the activity of a chemotherapeutic compound in those cancer cells are also disclosed. A kit including a quinonemethide triterpenoid and a chemotherapeutic compound is also provided.
Abstract:
Due to the trend of using larger wafer diameter and smaller lot size, cluster tools need to switch from processing one lot of wafers to another frequently. It leads to more transient periods in wafer fabrication. Their efficient scheduling and control problems become more and more important. It becomes difficult to solve such problems, especially when wafer residency time constraints must be considered. This work develops a Petri net model to describe the behavior during the start-up transient processes of a single-arm cluster tool. Then, based on the model, for the case that the difference of workloads among the steps is not too large and can be properly balanced, a scheduling algorithm to find an optimal feasible schedule for the start-up process is given. For other cases schedulable at the steady state, a linear programming model is developed to find an optimal feasible schedule for the start-up process.
Abstract:
The scheduling problem of a multi-cluster tool with a tree topology whose bottleneck tool is process-bound is investigated. A method for scheduling the multi-cluster tool to thereby generate an optimal one-wafer cyclic schedule for this multi-cluster tool is provided. A Petri net (PN) model is developed for the multi-cluster tool by explicitly modeling robot waiting times such that a schedule is determined by setting the robot waiting times. Based on the PN model, sufficient and necessary conditions under which a one-wafer cyclic schedule exists are derived and it is shown that an optimal one-wafer cyclic schedule can be always found. Then, efficient algorithms are given to find the optimal cycle time and its optimal schedule. Examples are used to demonstrate the scheduling method.
Abstract:
Due to the trend of using larger wafer diameter and smaller lot size, cluster tools need to switch from processing one lot of wafers to another frequently. It leads to more transient periods in wafer fabrication. Their efficient scheduling and control problems become more and more important. It becomes difficult to solve such problems, especially when wafer residency time constraints must be considered. This work develops a Petri net model to describe the behavior during the start-up transient processes of a single-arm cluster tool. Then, based on the model, for the case that the difference of workloads among the steps is not too large and can be properly balanced, a scheduling algorithm to find an optimal feasible schedule for the start-up process is given. For other cases schedulable at the steady state, a linear programming model is developed to find an optimal feasible schedule for the start-up process.
Abstract:
The present invention discloses a method of treating cancer comprising administering an effective amount of an alkaloid, in which the alkaloid is liensinine, isoliensinine, dauricine, cepharanthine, hernandezine or thalidezine and isolated from the traditional Chinese medicinal herbs. The use of the alkaloid in treating neurodegenerative disorder is also disclosed.
Abstract:
The present invention discloses a pharmaceutical composition of treating multidrug resistance cancer, comprising a citrus methoxyflavone and a chemotherapeutic drug, in which the citrus methoxyflavone is nobiletin. A method of treating multidrug resistance cancer comprising administrating citrus methoxyflavone and a chemotherapeutic drug is also disclosed.
Abstract:
The present invention discloses a pharmaceutical composition of treating multidrug resistance cancer, comprising a citrus methoxyflavone and a chemotherapeutic drug, in which the citrus methoxyflavone is tangeretin. A method of treating multidrug resistance cancer comprising administrating citrus methoxyflavone and a chemotherapeutic drug is also disclosed.
Abstract:
The present invention relates to methods for novel drug discovery, treatment and selective targeting for Gefitinib-resistant non-small-cell lung cancer (NSCLC) harboring an additional mutation, in particular, to the discovery of a drug candidate or agent identified by the presently claimed method for use in treating and selective targeting Gefitinib-resistant NSCLC harboring T790M mutation.
Abstract:
The present invention discloses a method of treating cancer comprising administering an effective amount of an alkaloid, in which the alkaloid is liensinine, isoliensinine, dauricine, cepharanthine, hernandezine or thalidezine and isolated from the traditional Chinese medicinal herbs. The use of the alkaloid in treating neurodegenerative disorder is also disclosed.