Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that operates with a wedge action. A launch carriage carrying an unmanned aircraft is positioned on first and second launch members. At least one of the launch members moves relative to the other from a first position to a second position, causing the launch carriage to move from a first launch carriage position to a second launch carriage position. As the launch carriage moves, it accelerates the aircraft and releases the aircraft for takeoff.
Abstract:
An articulated wing (20) is readily deployable from a stowed configuration that occupies minimal volume to an extended configuration for flight. The wing (20) includes a frame (24) having a pair of beams (30) spaced by one or more ribs (36), and a flexible covering material (26) over the frame (24) that defines the surface of the wing (20). Each beam (30) typically has multiple segments (40), and each segment (40) is pivotally connected to an adjacent segment (40) at a joint (42). A flexible actuation line (52) extends past each joint (42) and is attached to a portion of the beam beyond the joint. The beam (30) also includes portions that act as stops (46). The stops (46) limit the range of angular motion through which the respective segments (40) can rotate relative to one another. Consequently, when tension is applied to the line (52), the segments (40) rotate until respective stops (46) prevent further rotation. Tension in each line (52) keeps the wing (20) in its extended configuration.
Abstract:
An unmanned airborne reconnaissance system, the unmanned airborne reconnaissance system including a lightweight, portable, powered aircraft and a foldable launch rail, the aircraft, in a broken down condition and the launch rail in a broken down condition fitable inside a box, the box capable of being carried by one man. The launch system includes an elongated launch rail with the carriage assembly, and a propulsion means for accelerating the carriage assembly from one end of the launch rail to the other. The carriage assembly releasably engages the aircraft so as to propel the aircraft from one end of the launch rail to the other. The propulsion may be by a cartridge that explodes and releases a gas through a cylinder, or by elastic cords. The aircraft is guided through the air either by a programmed onboard computer which controls the control surfaces of the aircraft and/or by remote control. The aircraft typically contains a camera for recording and transmitting images received from the ground below.
Abstract:
An air-launched aircraft includes deployable wings, elevons, and vertical fins that deploy from a fuselage during flight. The aircraft may include a control system for operating the elevons, a communication system, and batteries for powering the systems. In addition, the aircraft may include a payload module that mates with an interface in the fuselage. The payload module may include any of a variety of payloads, including cameras, sensors, and/or radar emitters. The aircraft may be powered or unpowered, and may be very small, for example, less than on the order of 10 kg (22 pounds). The aircraft may be employed at a low cost for any of a wide variety of functions, such as surveillance, or as a decoy. The deployable surfaces of the aircraft may be configured to deploy in a pre-determined order, allowing the aircraft automatically to enter controlled flight after being launched in a tumbling mode.
Abstract:
Methods and apparatuses for launching, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
A system and method for moving an aerial vehicle along a flight path includes rotatable hubs mounted on opposite sides of the vehicle. Elongated airfoils are mounted on the hubs parallel to a common hub axis for rotation about the hub axis on a blade path. Each airfoil defines a chord line and the system includes a gear assembly changeable, during hub rotation, between a first modality wherein airfoil chord lines remain tangential to the blade path (curtate flight), and a second modality wherein airfoil chord lines remain parallel to the flight path of the vehicle (prolate flight). Also, rotation of the hub can be stopped and the airfoils used for fixed wing flight.
Abstract:
Methods and apparatuses for capturing and recovering unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be captured by a recovery line in flight, a process that can be aided by a line capture device having a retainer with two portions spaced apart by a distance great enough to receive the recovery line, e.g., to capture the recovery line with increased security. The line capture device can be operatively mounted on a lifting surface of the aircraft.
Abstract:
A method of shipping a disassembled miniature, unmanned aircraft capable of handling data, the aircraft having remote guidance, an onboard microprocessor for managing flight, wing area of at least eight hundred square inches, a wingspan of at least eight feet, and weighing under fifty-five pounds. The aircraft includes a data handling module. The aircraft is disassembled into separate components including at a minimum the wing, the fuselage, and the data handling module. The fuselage and possibly other lesser components are packed in a first shipping container. The wing is packed in a second shipping container. The data handling module is packed in a third shipping container. The first and second containers are shipped by overnight courier, while the third container is either shipped the same way or alternatively travels as unchecked luggage aboard a commercial airliner.
Abstract:
A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.
Abstract:
A method of shipping a disassembled miniature, unmanned aircraft capable of handling data, the aircraft having remote guidance, an onboard microprocessor for managing flight, wing area of at least eight hundred square inches, a wingspan of at least eight feet, and weighing under fifty-five pounds. The aircraft includes a data handling module. The aircraft is disassembled into separate components including at a minimum the wing, the fuselage, and the data handling module. The fuselage and possibly other lesser components are packed in a first shipping container. The wing is packed in a second shipping container. The data handling module is packed in a third shipping container. The first and second containers are shipped by overnight courier, while the third container is either shipped the same way or alternatively travels as unchecked luggage aboard a commercial airliner.