Abstract:
A plurality of acoustic sensors in a non-anechoic environment are calibrated with the aim of removing manufacturing tolerances and degradation over time but preserving position-dependent differences between the sensors, The sensors are excited by an acoustic stimulus which has either time-dependent characteristics or finite duration. The calibration is to be based on diffuse-field excitation only, in which indirect propagation (including single or multiple reflections) dominate over any direct-path excitation. For this purpose, the calibration process considers only a non-initial portion of sensor outputs and/or of an impulse response derived there-from. Based on these data, a frequency-dependent magnitude response function is estimated and compared with a target response function, from which a calibration function is derived.
Abstract:
A microphone array arrangement structure in a vehicle cabin is provided with multiple microphones arranged in a convex line. The microphones include a first microphone, and the direction of the axis of the first microphone faces the mouth of the driver. The microphone array arrangement structure is provided with covers housing the microphones and having multiple holes. The front surface of the covers form a convexly curved line, and each of the microphones is fixed inside of a cover to correspond to one of the holes.
Abstract:
A localized multimodal haptic system includes one or more electromechanical polymer (EMP) transducers, each including an EMP layer, such as an electrostrictive polymer active layer. In some applications the EMP transducer may perform an actuator function or a sensor function, or both. The EMP polymer layer has a first surface and a second surface on which one or more electrodes are provided. The EMP layer of the EMP actuator may be 5 microns thick or less. The EMP transducers may provide local haptic response to a local a stimulus. In one application, a touch sensor may be associated with each EMP transducer, such that the haptic event at the touch sensor may be responded to by activating only the associated EMP transducer. Furthermore, the EMP transducer may act as its own touch sensor. A variety of haptic responses may be made available. The EMP transducers may be used in various other applications, such as providing complex surface morphology and audio speakers.
Abstract:
A system and method for the directional transmission of sound is disclosed. In one embodiment, the system comprises an audio source configured to generate an audio signal, a control module configured to receive the audio signal and generate a driving signal, based at least in part on the audio signal, and an array comprising a plurality of loudspeakers, wherein the loudspeakers are linearly arranged such that the spacing between two adjacent loudspeakers increases along the array. In a particularly, embodiment, the spacing increases exponentially, and broadband dipole loudspeakers are used.
Abstract:
Systems and methods of improved noise reduction include the steps of: receiving an audio signal from two or more acoustic sensors; applying a beamformer to employ a first noise cancellation algorithm; applying a noise reduction post-filter module to the audio signal including: estimating a current noise spectrum of the received audio signal after the application of the first noise cancellation algorithm, wherein the current noise spectrum is estimated using the audio signal received by the second acoustic sensor; determining a punished noise spectrum using the time-average level difference between the audio signal received by the first acoustic sensor and the current noise spectrum; determining a final noise estimate by subtracting the punished noise spectrum from the current noise spectrum; and applying a second noise reduction algorithm to the audio signal received by the first acoustic sensor using the final noise estimate; and outputting an audio stream with reduced background noise.
Abstract:
A driving device for a sound system by loudspeaker signals, wherein the sound system has a wave field synthesis loudspeaker array and one or several supply loudspeakers arranged separate from the wave field synthesis array includes an audio input for receiving at least one audio signal from at least one sound source, a position input for receiving information on a position of the sound source, a wave field synthesis unit for calculating loudspeaker signals for the loudspeakers of the wave field synthesis loudspeaker array, and a provider for providing the loudspeaker signal for the one or the several supply loudspeakers. The driving device enables a sound system by means of which sound localization becomes possible for the audience and at the same time pleasant levels can be achieved also in the first rows of the audience.
Abstract:
Systems and methods for performing sound source localization are provided. In one aspect, a method for locating a sound source using a computing device subdivides a space into subregions. The method then computes a sound source power for each of subregions and determines which of the sound source energies is the largest. When the volume of the subregion is less than a threshold volume, the method outputs the subregion having the largest sound source power. Otherwise, the stages of partitioning, computing, and determining the subregion having the largest sound source power is repeated.
Abstract:
A method for real-time monitoring of audio signals reception quality includes receiving output signals from a plurality of microphone clusters, each microphone cluster having at least two microphone units to receive audio signals from at least two distinct directions and output corresponding electrical signals; identifying comparative features of output signals for each of the microphone clusters; and selecting at least one microphone cluster based on the identified features. A system for real-time monitoring of audio signals reception quality includes a plurality of microphone clusters, each microphone cluster having at least two microphone units to receive audio signals from at least two distinct directions and output corresponding electrical signals; and a main audio unit to identify comparative features of output signals for each of the microphone clusters and to select at least one microphone cluster based on the identified features.
Abstract:
In an electronic apparatus, microphones are arranged parallel to one side of a display screen so as to be spaced apart from each other on the front surface of a display whose display screen is exposed. Together with the microphone, a microphone is arranged parallel to other side different from one side of the display screen. Of the microphones, the microphones are selected when one side of the display screen serves as a bottom, and the microphones are selected when other side of the display screen serves as the bottom. A voice input process is then executed.
Abstract:
An audio system including a left input channel signal, a right input channel signal, and a discrete center input channel. Circuitry removes correlated content from the left input channel signal and the right input channel signal and inserts the correlated content into the center input channel signal to provide a modified left input channel signal, a modified right input channel signal, and a modified center input channel signal. The modified left input channel signal is radiated by a directional loudspeaker so that radiation in a direction toward a listening area is less than radiation in other directions. The modified right channel input channel signal is radiated by a directional loudspeaker so that radiation in a direction toward a listening area is less than radiation in other directions.