Abstract:
A method of capturing a digital image with a digital camera includes determining a first exposure level for capturing an image based on a first luminance level of the image, determining a second exposure level for capturing the image based on a threshold exposure level of the image, configuring an exposure level of a sensor of the digital camera based on the second exposure level, capturing the image as a digital image, and adding a non-linear digital gain to the digital image based on a difference between the first exposure level and the second exposure level.
Abstract:
Embodiments are directed towards determining within a digital camera whether a pixel belongs to a foreground or background segment within a given image by evaluating a ratio of derivative and deviation metrics in an area around each pixel in the image, or ratios of derivative metrics across a plurality of images. For each pixel within the image, a block of pixels are examined to determine an aggregate relative derivative (ARD) in the block. The ARD is compared to a threshold value to determine whether the pixel is to be assigned in the foreground segment or the background segment. In one embodiment, a single image is used to determine the ARD and the pixel segmentation for that image. Multiple images may also be used to obtain ratios of a numerator of the ARD, useable to determine an extent of the foreground.
Abstract:
The present invention relates to a method for scaling a first channel, wherein the method comprises computing a low resolution second channel based on a transformation of the second channel with a transformation function used to transform high resolution channel into a low resolution channel; computing a correlation function between the low resolution second channel and the first channel; determining a predicted second channel having the high resolution from the low resolution second channel according to a prediction method; computing an high-pass second channel based on the difference between the second channel and the predicted second channel and based on the correlation function; determining a predicted first channel having the high resolution from the first channel according to the prediction method.
Abstract:
A method for determining noise levels in a subband of an image. The method comprises receiving the subband of the image, defining block regions in at least two space domains of the subband, for each defined block region, identifying first wavelet coefficients associated with coordinate values in the at least two space domains in the defined block region, computing a correlation matrix between identified wavelet coefficients to determine the correlation between first wavelet coefficients according to the at least one color domain, computing second wavelet coefficients, the computation of second wavelet coefficients being based on the correlation matrix and the first wavelet coefficients, computing at least one noise level, the noise level computation being based on at least one second wavelet coefficient and providing the at least one noise level.
Abstract:
A coherency controller with a data buffer store that is smaller than the volume of pending read data requests. Data buffers are allocated only for requests that match the ID of another pending request. Buffers are deallocated if all snoops receive responses, none of which contain data. Buffers containing clean data have their data discarded and are reallocated to later requests. The discarded data is later read from the target. When all buffers are full of dirty data requests with a pending order ID are shunted into request queues for later service. Dirty data may be foisted onto coherent agents to make buffers available for reallocation. Accordingly, the coherency controller can issue snoops and target requests for a volume of data that exceeds the number of buffers in the data store.