Abstract:
A method for making a lithographic printing plate including the steps of providing a lithographic printing plate precursor including a heat sensitive image-recording layer, the image-recording layer including hydrophobic thermoplastic particles; image-wise exposing the precursor to infrared radiation having an energy density of 190 mJ/cm2 or less; mounting the exposed precursor on a printing press; developing the mounted precursor by supplying ink and/or fountain; and baking the plate by keeping the plate at a temperature above the glass transition temperature of the thermoplastic particles during a period between 5 seconds and 2 minutes.
Abstract translation:一种制备平版印刷版的方法,包括以下步骤:提供包括热敏图像记录层的平版印刷版原版,所述图像记录层包括疏水性热塑性颗粒; 将前体成像地曝光到能量密度为190mJ / cm 2以下的红外辐射; 将暴露的前体安装在印刷机上; 通过供应墨水和/或喷泉来显影所安装的前体; 并且在5秒至2分钟之间的时间内将板保持在高于热塑性颗粒的玻璃化转变温度的温度下烘烤该板。
Abstract:
An initiator composition and infrared radiation-sensitive composition include an onium cation and a boron-containing anion as well as a metallocene. These compositions can be used to provide negative-working imageable elements that can be imaged and developed to provide lithographic printing plates that have desired imaging speed, excellent run length, and shelf life without the need for a post-exposure baking step and oxygen barrier overcoat.
Abstract:
A negative-working lithographic printing plate precursor can be imaged with infrared radiation and processed in a single step using a single processing solution that has a pH of from about 2 to about 11 and contains an anionic surfactant. This single processing solution both develops the imaged precursor and provides a protective coating that need not be rinsed off before lithographic printing. The lithographic printing plate precursor contains a particulate polymeric binder.
Abstract:
An imaged and developed element, such as a lithographic printing plate, is provided by infrared radiation imaging of a negative-working imageable element having an outermost imageable layer that includes an acid generating compound that generates acid upon exposure to imaging infrared radiation, an infrared radiation absorbing compound, an acid activatable crosslinking agent that has acid activatable reactive groups, and a polymeric binder that is capable of undergoing an acid-catalyzed condensation reaction with the crosslinking agent. The imaged element is heated at from about 120 to about 150° C. for up to two minutes, and then developed with a single processing solution to remove only the non-exposed regions and to provide a protective layer prior to lithographic printing.
Abstract:
A method of processing an on-press developable lithographic printing plate involves the removal of overcoat by brushing or rubbing while in contact with water or an aqueous solution after imagewise exposure and before on-press development. The plate comprises a substrate, an on-press ink and/or fountain solution developable photosensitive layer, and a water soluble or dispersible overcoat. Preferably, the overcoat is incapable of being completely removed with ink and/or fountain solution on a lithographic press during roll up. Such a method allows the use of more durable overcoat for on-press developable plate.
Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. Also disclosed are a negative-working lithographic printing plate precursor that can be developed by a water-soluble resin-containing aqueous solution and a method of lithographic printing that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits an excellent fine line reproducibility in nonimage areas even when printing is performed using ultraviolet-curing ink (UV ink). Also provided is a negative-working lithographic printing plate precursor that exhibits an excellent combination of fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a hydrophilic support and has thereon a photopolymerizable layer that contains a polymer compound that has the urea bond in the side chain position and a hydrophilic group. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
A method of processing an on-press developable lithographic printing plate involving the removal of overcoat after imagewise exposure and before on-press development is described. The plate comprises a substrate, an on-press ink and/or fountain solution developable photosensitive layer, and an overcoat. The laser imaged plate is stripped off the overcoat, and then under a white room light mounted on press and developed with ink and/or fountain solution. Here the plate is capable of hardening upon exposure to a laser, has limited white light stability before the removal of the overcoat, and has significantly improved white light stability after the removal of the overcoat.
Abstract:
An object of the present invention is to provide an image recording material exhibiting an excellent exposure visualization property as well as an image formation process employing the image recording material, and further to provide not only a printing plate material exhibiting excellent on-press developability and printing durability, but also an image formation process employing the printing plate material, accompanied with an excellent exposure visualization property. Also disclosed is an image recording material possessing a support and provided thereon, a thermosensitive image formation layer, wherein the thermosensitive image formation layer contains thermoplastic spherical particles having an average particle diameter of 100-500 nm, and exhibits a structural color originated with the thermoplastic spherical particles.
Abstract:
The present invention provides an intermediate transfer member having higher transferability and higher cleaning properties and durability, an apparatus for producing an intermediate transfer member which does not require the provision of any large equipment such as vacuum equipment, and an image forming apparatus comprising the intermediate transfer member. The intermediate transfer member contains a support and, provided on the support, a first inorganic compound layer containing carbon atoms and a second inorganic compound layer as a surface layer, the second inorganic compound layer not containing any carbon atom or containing carbon atoms in a smaller amount than the carbon atoms in the first inorganic compound layer.
Abstract:
A curable composition in which polymerization inhibition due to oxygen is suppressed and which may be cured with high sensitivity by exposure to laser light or the like is provided. The curable composition includes: a polymerizable compound having an ethylenically unsaturated bond; a binder; a radical polymerization initiator; and at least one specific amine compound. Also provided is an image forming material and a negative-working planographic printing plate precursor including the curable composition.