Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits excellent on-press developability, nonimage area fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a hydrophilic support and has thereon a photopolymerizable layer that contains at least one selected from the group consisting of a polymer compound that has an ethylenically unsaturated bond in the side chain position, a hydrophilic group and a sulfonamide group and a polymer compound that has an ethylenically unsaturated bond in the side chain position, a hydrophilic group and a cyclic structure derived from a maleimide. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
A curable composition, including: a polymerizable compound (a) including an ethylenically unsaturated bond; a binder polymer (b); a radical polymerization initiator (c); and an alicyclic compound (d) including a urea bond is provided.
Abstract:
A plate-making method includes: exposing a lithographic printing plate precursor with laser; and rubbing a surface of the exposed lithographic printing plate precursor with a rubbing member in the presence of a developer having pH of from 2 to 11 and containing a water-soluble polymer compound to remove the protective layer and an unexposed area of the photosensitive layer, the lithographic printing plate precursor includes, in the following order, a hydrophilic support, a photosensitive layer containing a polymerization initiator, a polymerizable compound, a sensitizing dye and a binder polymer and a protective layer, and the water-soluble polymer compound is a vinyl copolymer containing a monomer unit having at least one functional group capable of interacting with a surface of the support and a monomer unit having at least one hydrophilic group which is different from the functional group capable of interacting with a surface of the support.
Abstract:
The present invention provides a curable composition containing at least one species selected from polymerizable monomers represented by the following formulas (I) to (III) and a polymerization initiator, and a planographic printing plate precursor including the same. The curable composition can be cured with high sensitivity due to laser light exposure or the like, and the inhibition of polymerization due to oxygen is controlled. The composition has excellent solubility in a developer or a solvent.
Abstract:
A negative-working photosensitive material is provided which includes: a support; an undercoat layer; and a photosensitive layer including a polymerization initiator, a polymerizable compound, and a binder polymer, wherein the support, the undercoat layer, and the photosensitive layer are sequentially layered, the undercoat layer includes a polymer including a structural unit (a) including at least one of a carboxylic acid or a carboxylic acid salt and a structural unit (b) including at least one carboxylic acid ester; and the content of the structural unit (a) in the polymer is from 30% to 90% by mole. Also, a negative-working planographic printing plate precursor including the negative-working photosensitive material is provided.
Abstract:
A lithographic printing plate precursor, which comprises: a support; an image-recording layer; and a protective layer, in this order, wherein at least one of the image-recording layer and the protective layer comprises a phosphonium salt having a specific structure, and a lithographic printing process, which comprises: exposing a lithographic printing plate precursor; supplying an oil-based ink and a fountain solution comprising a phosphonium salt having a specific structure to the exposed lithographic printing plate precursor on a printing machine to remove an unexposed area of an image-recording layer; and conducting printing.
Abstract:
A lithographic printing process which comprises the steps of: imagewise scanning with a laser a presensitized lithographic plate which comprises a hydrophilic support and an image-recording layer containing a polymerization initiator, an ethylenically unsaturated polymerizable compound having no adherence to the hydrophilic support, and an ethylenically unsaturated polymerizable compound having adherence to the hydrophilic support and a molecular structure comprising a polyoxyalkylene group to polymerize the ethylenically unsaturated polymerizable compounds within the exposed area; removing the image-recording layer within the unexposed area from the lithographic plate mounted on a cylinder of a printing press; and then printing an image with the lithographic plate mounted on the cylinder of the printing press. A presensitized lithographic plate is also disclosed.
Abstract:
To provide a lithographic printing plate precursor capable of obtaining a plenty of sheets of good printed matters with practical energy dosage, which is excellent in on-press developing property and press life, and capable of reducing pollution of fountain solution, and provide a lithographic printing method. The lithographic printing plate precursor comprises a support having provided thereon an image-recording layer, which lithographic printing plate precursor is mounted on a printing press and imagewise exposed, or mounted on the printing press after imagewise exposure, and then developed by feeding printing ink and/or a fountain solution, wherein at least a part of the unexposed part of the image-recording layer is not dissolved in the printing ink, the fountain solution or both of them, and removed by falling out of film, and the invention provides a lithographic printing method using the same.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound represented by the following formula (I), (B) an infrared absorbent, and (C) a compound having at least one addition-polymerizable ethylenically unsaturated bond, and a negative planographic printing plate precursor having a recording layer containing the polymerizable composition. In the formula (I), R1, R2, R3, R4, R5, and R6 each independently represent a hydrogen atom or a monovalent organic group; and X− represents an anion.
Abstract:
A method for producing a lithographic printing plate is provided, wherein, in the non-alkaline development of a lithographic printing plate precursor having a protective layer, even if the protective layer components are mingled into the developer, the reduction in development removability of the image recording layer and the generation of development scum can be inhibited; an on-press development type lithographic printing plate precursor with excellent inking property, high scratch resistance, satisfied on-press developability and good fine line reproducibility is provided; and a lithographic printing method is provided, each of which is a method for producing a lithographic printing plate, comprising: imagewise exposing a lithographic printing plate precursor comprising a support, an image recording layer and a protective layer, and rubbing the plate surface by a rubbing member of an automatic processor in the presence of a developer at a pH of 2 to 10 to remove the protective layer and the image recording layer in the unexposed area; a lithographic printing plate precursor comprising a support, an image recording layer removable with a printing ink and/or a fountain solution, and a protective layer containing a polyvinyl alcohol having a carboxyl group and/or a sulfonic acid group within the molecule; and a lithographic printing method comprising on-press development.