Abstract:
A circuit may include an audio amplifier (314) configured to amplify an input signal (SAUDIO) to generate an output signal (SOUT+, SOUT−) suitable for driving a loud speaker (316). A first circuit (318) may be configured to generate a first analog signal (SI) based on a current level drawn by the loud speaker (316), and a second circuit (320) may be configured to generate a second analog signal (SV) based on a voltage supplied across the loud speaker (316). A third circuit (322, 312) may be configured to generate a third analog signal (RESIDUE) based on the difference between the first and second analog signals, and modify the input signal (SAUDIO) based on the third analog signal.
Abstract:
A signal generation circuit includes a voltage controlled oscillator configured to generate a differential oscillator signal having an amplitude. A passive mixer has first differential inputs coupled to the voltage controlled oscillator to receive the oscillator signal. The passive mixer also includes second differential inputs. A filter circuit is coupled between the voltage controlled oscillator and the second differential inputs of the passive mixer. The filter circuit is configured to filter the differential oscillator signal as a function of the amplitude of the differential oscillator signal to thereby generate a filtered differential oscillator signal and to provide the filtered differential oscillator signal to the second differential inputs of the passive mixer.
Abstract:
A charge-pump device receives two complementary driving signals and a DC signal that are applied to a charge-pump stage containing a full-wave rectifier bridge configured to deliver a DC output signal. The bridge includes active switches controllable by control signals present at two control nodes. The charge-pump device further receives complementary auxiliary signals that are respectively synchronous with the complementary driving signals but have faster edges. Two resistive capacitive filters filter the complementary auxiliary signals to generate control signals at the two control nodes for controlling actuation of the active switches in the bridge.