Abstract:
Methods are provided for shape-setting hyperelastic, single-crystal shape memory alloy (SMA) material while preserving the hyperelastic properties of the material. A wire or rod of a single crystal shape memory alloy material is heated to an annealing temperature (Ta). While maintained at the annealing temperature, the wire or rod is shaped by driving the wire or rod and a shaping form together into contact with each other, and the shaped wire or rod is quenched in a quenching medium virtually simultaneously with the shaping.
Abstract:
The orthodontic archwire bracket comprises a base body (10) having a base element (11) to be fixed to a tooth and a bracket body (20) having a socket element (25) surrounded by a perimetric wall (32) including two opposed slot portions (21a, 21b) forming a slot (21) to receive an archwire. The base and bracket bodies (10, 20) are connected by a ball and socket joint coupling. The perimetric wall (32) has a slit (33) providing a gap. A control element (60) mounted on the bracket body (20) is changeable between locking and unlocking positions to expand or constrict the bracket body (20) by increasing or reducing the gap. The ball and socket joint coupling is locked by friction when the control element (50) is in the locking position and the ball and socket joint coupling is unlocked enabling relative movement in three coordinate axes when the control element (50) is in the unlocking position.
Abstract:
A method of forming a dental tool or instrument having a memorized shape. The method comprises selecting a nitinol wire having an initial transition temperature below room temperature; grinding the nitinol wire to form the dental tool or instrument so as to have a shank, located adjacent a first end, and a working area, with at least one cutting edge, located adjacent an opposite second leading end; molding the working area into a molded shape having at least one protrusion formed therein; heating the dental tool or instrument to both: a) alter the initial transition temperature of the dental tool or instrument to a final transition temperature, and b) memorize the Molded shape including the at least one protrusion so that the dental tool or instrument will automatically return to the molded shape having the at least one protrusion when at a temperature at or above the final transition temperature.
Abstract:
Medical instruments, particularly, endodontic instruments with unique limited memory characteristics, and methods for making such instruments. One embodiment includes heat treating an endodontic blank prior to forming a working portion of the endodontic instrument.
Abstract:
The present invention provides a selective coating of an endodontic file, in which the distal end of the file is uncoated or alternatively leaving the outermost part of the blades of the distal end portion uncoated. The distribution of the nanoparticles is thus non uniform along the surface of the file leaving only a part of the file coated. In the present invention, the distal end of the device being subjected to the highest torque is either uncoated at all, or has a coated core and uncoated blades.
Abstract:
A self-ligating orthodontic bracket for ligating an archwire includes a bracket body defining an archwire slot configured to receive the archwire, a movable member movable relative to the archwire slot, and an actuator coupled to at least one of the bracket body and the movable member. The actuator includes a ferromagnetic shape memory alloy and is configured to move the movable member when exposed to a magnetic field. A method of orthodontic treatment using a self-ligating orthodontic bracket having an archwire slot configured to receive an archwire therein and including a ferromagnetic shape memory includes exposing at least a portion of the orthodontic bracket to a magnetic field such that the ferromagnetic shape memory alloy at least partially transforms to a martensitic phase from an austenitic phase, and at least one of inserting an archwire into the archwire slot and removing an archwire from the archwire slot.
Abstract:
A dental wedge for inserting into the interproximal space between adjacent teeth comprises a first and second sidewall comprised of a shape memory material, including a nickel-titanium alloy, wherein the dental wedge is in a first, resting state when outside of the interproximal space and transforms to a second, operational state when the dental wedge is interested into the interproximal space between adjacent teeth and exposed to a first transformation stimulus, namely exposure to the higher temperature in the interproximal space. The expansion force generated by the dental wedge when in the second, operational stage is sufficient to secure a dental matrix against the tooth being restored and to separate the tooth being restored and adjacent tooth to expand the interproximal space.
Abstract:
A dental implant system with a ceramic implant and with an abutment, which moreover includes an insert element for the ceramic implant. The insert element is either manufactured from non-ceramic material or is manufactured essentially of injection molded ceramic. The insert element matches with a recess a proximal region of the ceramic implant and is inserted or insertable into the recess. The insert element serves for the fastening of the abutment and for this is equipped with fastening structures. The insert element, which is arranged in the recess of the ceramic implant, is connectable or connected to the ceramic implant by way of a frictional connection and/or positive connection with respect to axial traction.
Abstract:
Method for shaping an orthodontic wire, made of a shape-memory material, into a target geometry in order to permit precise insertion into a patient-specific orthodontic apparatus, said method having the following steps: a) creating a patient-specific target set-up of the upper jaw or lower jaw of the patient, b) placing brackets on teeth to be treated in the target set-up, c) preparing a two-dimensional image of the target set-up with brackets in a plan view, d) loading the image into a data processor, e) identifying the position of the slots of the brackets in the image, f) exporting data on the position of the slots from the data processor, g) creating a baking mould for the shape-memory wire, wherein the data are used to help generate wire-fixing portions in the baking mould that maintain the wire in areas corresponding to the slots during the baking, h) inserting the wire into the baking mould, and i) baking the wire.
Abstract:
Dental retention systems which facilitate the adjustment or removal of an oral appliance, e.g., a crown or bridge, from a reconfigurable abutment assembly are described. The adjustable abutment assembly may be secured to an anchoring implant bored into the bones within the mouth. The abutment assembly has a projecting abutment portion with one or more shape memory alloy compression plates or elements extending along the projecting abutment portion. Each of the plates has a length with one or more straightened portions and with at least one curved or arcuate portion. Energy may be applied to the elements such that the arcuate portion self-flattens to allow for the oral appliance to be placed thereupon while removal of the energy allows the elements to reconfigure into its curved configuration thereby locking the oral appliance to the abutment. Removal of the oral appliance may be effected by reapplication of energy to the elements.