Abstract:
The present invention relates to a positive working lithographic printing plate precursor, comprising:(1) a substrate; and (2) an imaging layer, formed on the substrate, comprising a water-insoluble and an alkaline aqueous solution-soluble or dispersible resin and a photo-thermal converting material, wherein the imaging layer comprises either polyurethane or polyurethane urea or both of the polyurethane and the polyurethane urea, the polyurethane and the polyurethane urea comprising a unit having a substituent having an acidic hydrogen atom and a unit having a polysiloxane moiety in a side or main chain. The present invention can provide a lithographic printing plate precursor which has high printing durability, good scratch resistance, and good developing properties, as well as enhanced ink receptivity.
Abstract:
A lithographic printing plate precursor in a positive-type with an infrared-sensitivity, having a support and an image recording layer provided on the support, the support having a hydrophilic surface, the recording layer having a particular resin, an amphoteric surfactant and/or an anionic surfactant, and an infrared absorbing agent, wherein the particular resin being at least one of resins selected from the group consisting of a polyurethane resin, a poly (vinyl acetal) resin, and maleimide resin A.
Abstract:
A method of producing an offset lithographic printing plate including the steps of providing a grained, anodized and passivated aluminum plate of preferred surface roughness; applying a receptive coating to the grained aluminum plate; image-wise applying an inkjet fluid on top of the receptive coating; and heating the oleophilic inkjet fluid allowing an oleophilic resin of the inkjet fluid to bond with the grained aluminum.
Abstract:
A lithographic printing plate precursor includes a support, an undercoat layer and an image-recording layer in this order, in which by exposing imagewise the image-recording layer with laser and then supplying at least any of printing ink and dampening water on a cylinder of a printing machine, an unexposed area of the image-recording layer can be removed, and the image-recording layer contains (A) a polymerization initiator, (B) a polymerizable compound and (C) a binder polymer, and the undercoat layer contains the copolymer (D1) as defined herein and the copolymer (D2) as defined herein and a weight of the copolymer (D1) is from 5 to 95% based on a total weight of the copolymers (D1) and (D2).
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an image-recording layer which is capable of forming an image by removing an unexposed area of the image-recording layer with at least one of printing ink and dampening water on a printing machine after exposure and contains an infrared absorbing dye, a polymerization initiator, a polymerizable compound and a binder polymer having an alkylene oxide group; and a protective layer containing a hydrophilic polymer which contains at least a repeating unit represented by the formula (1) as defined herein, a repeating unit represented by the formula (2) as defined herein, and a repeating unit represented by the formula (4) as defined herein, and in which a content of the repeating unit represented by the formula (4) is from 0.3 to 5.0% by mole based on total repeating units of the hydrophilic polymer.
Abstract:
A lithographic printing plate precursor includes: a support; and an image-recording layer containing (A) a polymerization initiator, (B) a sensitizing dye and (C) a polymerizable compound, and the image-recording layer or an undercoat layer which is optionally provided between the support and the image-recording layer comprises (D) a polymer compound comprising (a1) a repeating unit having a side chain having a structure represented by the following formula (a1-1) and (a2) a repeating unit having a side chain having at least one structure of the formulae (a2-1), (a2-2), (a2-3), (a2-4), (a2-5) and (a2-6) as defined herein.
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an image-recording layer which is capable of forming an image by removing an unexposed area by an automatic development processor in the presence of a developer having pH of from 2 to 14 after exposure and contains (A) a sensitizing dye, (B) a polymerization initiator, (C) a polymerizable compound and (D) a polymer which is insoluble in water and alkali-soluble; and a protective layer, and the protective layer contains (E) a hydrophilic polymer which has a repeating unit represented by the formula (1) as defined herein and a repeating unit represented by the formula (2) as defined herein and a sum of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) is at least 95% by mole based on total repeating units constituting the polymer.
Abstract:
Negative-working imageable elements have a hydrophilic substrate and a single thermally-sensitive imageable layer. This layer can include an infrared radiation absorbing compound and polymeric particles that coalesce upon thermal imaging. These coalesceable polymeric particles comprise a thermoplastic polymer and a colorant to provide improved visible contrast between exposed and non-exposed regions in the imaged element, such as lithographic printing plates.
Abstract:
To provide a lithographic printing plate precursor which is excellent in the gum development property, running processing property and scratch resistance and a lithographic printing plate precursor which is good in all performances of the on-press development property, ink receptivity, sensitivity and printing durability, and a method of producing thereof. A lithographic printing plate precursor has a support, an image-recording layer containing a radical polymerization initiator and a radical polymerizable compound, and an overcoat layer containing a polymer resin which has a cloud point in an aqueous solution and includes a monomer unit containing at least any of an amino group and an amido bond, in this order.