Abstract:
A plate making method of a lithographic printing plate comprising (1) preparing a lithographic printing plate precursor capable of forming an image with a semiconductor laser emitting an infrared ray having a wavelength from 760 to 1,200 nm which comprises a support and an image-recording layer containing a cyanine dye, a diphenyl iodonium salt or triphenyl sulfonium salt which may have a substituent on the phenyl group, a radical polymerizable compound and a polymer fine particle having a polyoxyalkylene chain in its side chain in this order, (2) placing a lith film on the lithographic printing plate precursor and reducing pressure so that the lith film is closely adhered to the lithographic printing plate precursor, (3) conducting UV exposure, and (4) conducting on-press development.
Abstract:
A heat-sensitive positive-working lithographic printing plate precursor comprising (1) a support having a hydrophilic surface or which is provided with a hydrophilic layer, (2) a heat-sensitive coating, comprising an underlayer on said support and thereon an upperlayer, an IR absorbing agent in at least one of said underlayer and upperlayer, a phenolic resin in said upperlayer, and a first polymer in said underlayer, characterized in that said first polymer is an alkaline soluble polymer comprising a first sulfonamide containing monomeric unit having a specified structure according to formula I or formula II and a second amide containing monomeric unit having a specified structure according to formula III. The printing plates show an improved chemical resistance of the coating and a reduced undercutting of the image forming parts of the coating.
Abstract:
A printing apparatus employs a photosensitive drum for forming a latent image on a surface region thereof, a developing unit for forming a protrusion by selectively causing ink repellent particles to adhere onto the surface region carrying the latent image formed thereon, an ink roller for feeding ink to the protrusion on the surface of the photosensitive drum, a blanket cylinder for receiving the ink from the projected region, an impression cylinder for pressing the ink on the surface of the blanket cylinder when the ink is transferred onto a sheet of paper, and a conveying unit for conveying the sheet of paper. The surface of the ink repellent particles has a property of repelling the ink, while the surface of the photosensitive drum has a property of not repelling the ink.
Abstract:
A lithographic printing plate precursor includes: a support; and an image-recording layer containing (A) an infrared absorbing agent, (B) a radical polymerization initiator, (C) a polymerizable compound and (D) an epoxy compound having a molecular weight of 1,000 or less.
Abstract:
The invention provides a planographic printing plate precursor having at least: a support; and an image recording layer that is provided on the support, the image recording layer comprising: an infrared ray absorbing agent (A); a polymerization initiator (B); a polymerizable compound (C); and a compound (D) represented by the following Formula (I). In Formula (I), at least one of R1 to R3 represents —(CH2CH2O)n—R4, while the remainder of R1 to R3 respectively independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or R5—COOH; R4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; n represents an integer of 1 to 20; and R5 represents an alkylene group having 1 to 6 carbon atoms. The invention further provides a printing method using the planographic printing plate precursor and performing on-press development.
Abstract:
A lithographic printing plate precursor comprising a support and an image recording layer capable of drawing an image by exposure with an infrared laser, wherein the image recording layer contains (A) an infrared absorbent and (B) an iodonium salt represented by the following formula (1): wherein Ar1 and Ar2 each represents a benzene ring which may have a substituent, provided that two benzene rings are differing in the substituent from each other and a total of Hammett's σ values of substituents on at least one of the benzene rings is a negative value, and Z represents a counter anion.
Abstract:
The instant disclosure relates to an ink jet printable optical recording medium including a substrate having opposing surfaces, namely a recording surface and a printing surface. The printing surface of the substrate is coated with an adhesion promotion layer which includes polyurethane, a high surface area inorganic pigment having a surface area of at least 100 m2/g, and a low surface area inorganic pigment having a surface area of at most 50 m2/g. The adhesion promotion layer is coated with an ink receptive coating.
Abstract:
A method of making a lithographic printing plate includes the steps of: a) providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer, (ii) a coating on the support including an imaging layer, and, optionally, an intermediate layer between the imaging layer and the support, wherein the imaging layer includes a switchable polymer, b) image-wise exposing the coating, whereby the polymer undergoes a chemical reaction induced by the exposing step thereby creating a lithographic image consisting of printing areas and non-printing areas wherein the non-printing areas are removable from the support by a gum solution, and c) developing the precursor by treating the coating of the precursor with the gum solution thereby removing the non-printing areas.
Abstract:
A compound having, in its molecule, a polymethine chain structure containing a partial structure represented by the following formula (1-1), and an image forming material containing the same. In the formula (1-1), R1, R2, R3, R4, and X each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group. The image forming material is useful as the image recording layer of a planographic printing plate precursor.
Abstract:
A method of making a lithographic printing plate includes the steps of: a) providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer, (ii) a coating on the support including a photopolymerizable layer, a top layer and, optionally, an intermediate layer between the photopolymerizable layer and the support, wherein the photopolymerizable layer includes a polymerizable compound, a polymerization initiator, and a binder, b) image-wise exposing the coating in a plate setter, c) optionally, heating the precursor in a pre-heating unit, and d) treating the precursor in a gumming station, the gumming station including a first and at least a second gumming unit, wherein the precursor is washed in the first gumming unit by applying a gum solution to the coating thereby removing at least a portion of the top layer, and wherein, subsequently, the precursor is developed in the second gumming unit with a gum solution thereby removing non-exposed areas of the photopolymerizable layer from the support and gumming the plate in a single step.