Abstract:
The present invention provides a barrier device including an upper substrate, a lower substrate and a liquid crystal layer sandwiched between the upper substrate and the lower substrate. The upper substrate includes a first substrate and a first electrode, a first insulation layer and a plurality of first stripe electrodes sequentially formed on the first substrate. The lower substrate includes a second substrate and a second electrode, a second insulation layer and a plurality of second stripe electrodes sequentially formed on the second substrate. The present invention further provides a 3D display and a driving method for a barrier device.
Abstract:
The present disclosure provides a wire or cable comprising a flame retardant-free thermoplastic inner sheath and an outer sheath composition comprising, based on the weight of the composition, (a) 10 wt % to 90 wt % of a TPU based resin, (b) 5 wt % to 90 wt % of a metal hydrate, (c) 2 wt % to 50 wt % of a nitrogen-based phosphorus flame retardant, and (d) 2 wt % to 50 wt % liquid phosphate modifier, wherein the outer sheath is in contact with the insulation covering, and wherein the outer sheath has a thickness from greater than zero to 0.8 mm.
Abstract:
Halogen-free, thermoplastic polyurethane-based compositions having good mechanical and flame-retardant properties are provided. The compositions include flame-retardant aromatic organic phosphate compounds that do not exhibit migration in molded products, such as cable and wire jacketing and insulation. The compositions include a continuous resin phase comprising a thermoplastic polyurethane elastomer, at least one aromatic organic phosphate flame retardant having a melting point of at least 50
Abstract:
Techniques for implementing video encoding enhancements may increase video encoding efficiency. One of the techniques may involve the use of an exception value and a maximum index value in inter-prediction coding lookup table to enhance the combined coding of an inter-prediction direction and a reference frame index for a coding unit. Another of the techniques may include adaptively ordering the encoding of a split flag value and a skip flag value for a coding unit. An additional technique may include providing a uniform approach to adaptively combined code the coded block flag (CBF) values for transform or coding units of images that are used with the Residue Quad-tree (RQT) information to represent residue information.
Abstract:
Various embodiments of solid-state conductors containing solid polymer electrolytes, electronic devices incorporating the solid-sate conductors, and associated methods of manufacturing are described herein. In one embodiment, a solid-state conductor includes poly(ethylene oxide) having molecules with a molecular weight of about 200 to about 8×106 gram/mol, and a soy protein product mixed with the poly oxide), the soy protein product containing glycinin and β-conglycinin and having a fine-stranded network structure. Individual molecules of the poly(ethylene oxide) are entangled in the fine-stranded network structure of die soy protein product, and the poly(ethylene oxide) is at least 50% amorphous.
Abstract:
A method for constructing a space-time/space-frequency code, and a transmitting method and apparatus are provided, which relate to the field of wireless communication technologies. The method for constructing a space-time/space-frequency code includes: classifying at least two transmitter antennas into K groups, and classifying information symbols into K′ groups; constructing a Toeplitz matrix for information symbols in each group according to the number of transmitter antennas in a transmitter antenna group; and substituting the Toeplitz matrix for nonzero elements in an Orthogonal Space-Time Block Coding (OSTBC) matrix that is based on K and K′, and when the OSTBC matrix comprises a zero element, substituting a zero matrix with a corresponding dimension, for the zero element. The space-time code constructed with the above method has orthogonality.
Abstract:
According to some embodiments, first and second processing elements may be provided on a die, and there may be a plurality of potential communication links between the first and second processing elements. Moreover, control logic may be provided on the die to dynamically activate at least some of the potential communication links (e.g., based on a current bandwidth appropriate between the first and second processing elements).
Abstract:
In an embodiment, a method is disclosed which includes: carrying out interpolation by using a slice away from a slab boundary, and substituting a slice having slab boundary artifacts existing in the slab boundary, to obtain an interpolated image; carrying out Fourier transform on the interpolated image to generate first K-space data; carrying out Fourier transform on the original image to generate second K-space data; merging the first K-space data with the second K-space data, wherein the weight of the first K-space data is greater than that of the second K-space data in the middle of the K-space, and the weight of the second K-space data is greater than that of the first K-space data at the edge of the K-space; and carrying out inverse Fourier transform on the merged K-space data.