Abstract:
A polymer electrolyte membrane includes an ion-conducting polymeric electrolyte material and platelets, distributed through the polymeric electrolyte material. The platelets have an aspect ratio of length to thickness of at least 2:1. The platelets are aligned generally parallel to a length of the membrane. The platelets can be functionalized with free radical scavengers, or other moieties, to extend the lifetime of the membrane or of a membrane electrode assembly incorporating the membrane.
Abstract:
A fuel cell membrane electrode assembly including a polymer electrolyte membrane (PEM) and first and second electrodes. The PEM is situated between the first and second electrodes. The first electrode includes a first catalyst material layer including a first catalyst material and having first and second surfaces. The first electrode includes first and second material layers adjacent to the first and second surfaces, respectively, of the first catalyst material. The first material layer faces away from the PEM and the second material layer faces the PEM. The first material layer comprises a graphene-based material layer having a number of defects configured to mitigate dissolution of the first catalyst material through the first material layer.
Abstract:
The present invention relates to an electrode catalyst for fuel cell containing a catalyst carrier having carbon as a main component and a catalytic metal carried on the catalyst carrier, wherein the electrode catalyst for fuel cell has a ratio R′ (D′/G intensity ratio) of a peak intensity of D′ band (D′ intensity) measured in the vicinity of 1620 cm−1 to a peak intensity of G band (G intensity) measured in the vicinity of 1580 cm−1 by Raman spectroscopy of more than 0.6 and 0.8 or less, and satisfies at least one of the (a) to (d). According to the present invention, an electrode catalyst for fuel cell excellent in gas transportability is provided.
Abstract:
A solid state battery includes a flexible polymer sheet, and an array of solid state pillars supported by and extending through the sheet. Each of the pillars has an anode layer, a cathode layer adjacent, and an inorganic solid electrolyte (ISE) layer interposed between the anode and cathode layers.
Abstract:
The present invention relates to a method for producing a polymer electrolyte molded article, which comprises forming a polymer electrolyte precursor having a protective group and an ionic group, and deprotecting at least a portion of protective groups contained in the resulting molded article to obtain a polymer electrolyte molded article. According to the present invention, it is possible to obtain a polymer electrolyte material and a polymer electrolyte molded article, which are excellent in proton conductivity and are also excellent in fuel barrier properties, mechanical strength, physical durability, resistance to hot water, resistance to hot methanol, processability and chemical stability. A polymer electrolyte fuel cell using a polymer electrolyte membrane, polymer electrolyte parts or a membrane electrode assembly can achieve high output, high energy density and long-term durability.
Abstract:
An ion-conducting composite electrolyte membrane with strength improved without impairing ionic conductivity, and a fuel cell using the same are provided. The proton conductive composite electrolyte membrane includes an electrolyte which includes an ion-dissociating functional group and is made of a fullerene derivative or sulfonated pitch within a range of 5 wt % to 85 wt % both inclusive, and a binder which has a weight-average molecular weight of 550000 or over and a logarithmic viscosity of 2 dL/g or over, and is made of a fluorine-based polymer such as polyvinylidene fluoride and a copolymer of polyvinylidene fluoride and hexafluoropropylene within a range of 15 wt % to 95 wt % both inclusive.
Abstract:
An object of the present invention is to provide an electrolyte membrane that suppresses swelling and shrinkage caused by water retained in the electrolyte membrane for a solid polymer-type fuel cell, improves the durability of the electrolyte membrane, and obtains excellent power generation characteristics with a low resistance. The electrolyte membrane for a solid polymer-type fuel cell includes, as a reinforcing membrane, a nonwoven fabric composed of an electrolyte material and PVDF bicomponent fibers 2a, thereby improving the durability of the electrolyte membrane. Furthermore, the bicomponent fiber 2a has pores 23 that can effectively retain generated water, thereby improving battery performance under the condition of a low humidity.
Abstract:
The disclosed forms a proton exchange membrane. First, multi-maleimide and barbituric acid are copolymerized to form a hyper-branched polymer. Next, the solvent of the sulfonated tetrafluoroethylene copolymer (Nafion) aqueous solution is replaced from water with dimethyl acetamide (DMAc). 10 to 20 parts by weight of the hyper-branched polymer is added to the 90 to 80 parts by weight of the Nafion in a DMAc solution, stood and heated to 50° C. to inter-penetrate the hyper-branched polymer and the Nafion. The heated solution is coated on a substrate, baked, and pre-treated to remove residue solvent for completing an inter-penetrated proton exchange membrane.
Abstract:
A composition including a compound represented by Formula 1, an azole-based polymer, and at least one of compounds represented by Formula 2-7 according to the specification, a composite obtained from the composition, an electrode and electrolyte for a fuel cell that include the composition or the composite, and a fuel cell including the electrode or the electrolyte membrane: M11-aM2aPxOy Formula 1 wherein, in Formula 1, M1 is a tetravalent element; M2 is at least one selected from the group including a monovalent element, a divalent element, and a trivalent element; 0≦a
Abstract:
A composition including a cross-linkable compound and at least one selected from compounds represented by Formula 1, a composite obtained from the composition, an electrode including the composition or the composite, a composite membrane including the composite, and a fuel cell including the composite membrane, wherein, in Formula 1, a and R are as defined in the specification.