Abstract:
A device for controlling the position of an underwater cable comprises a body, first and second actuators, and a pair of wings. The body is stationarily mountable to the underwater cable and the first and second actuators are disposed in the body. Each wing has an axis of rotation and the wings are coupled to the first and second actuators to control the depth and the horizontal position of the underwater cable in the water.
Abstract:
A seismic cable (1) including a plurality of electrical/optical elements (5) which are arranged to be interconnected with a number of seismic sensor devices (24) arranged at intervals along the cable and installed in a housing (15) integrated in the cable (1). The sensor housing (15) is centrally arranged in the cable (1) and interconnected with a central strength element (2). The electrical/optical elements (5) are arranged over and around the central element (2) and over the housing (15).
Abstract:
A communication housing for devices external to a solid marine seismic cable, especially for level control devices, comprises an upper housing half and a lower housing half, coupled together around the cable. The upper housing half includes a plurality of wells, for example three wells, each adapted to receive a communication coil. The lower housing half has no such wells. The communication coils are wound in series to reinforce the signal strength of the communication signal. The communication coils are preferably formed to two segments, joined together at a flexible joint to reduce the likelihood of breakage of the coil core as the cable is wound onto a takeup reel aboard the exploration vessel.
Abstract:
Seismic cable for placing on the sea bottom comprising two or more seismic sensor units adapted to detect vibrations in the sea floor and being separated by chosen lengths of cable. The cable is characterize in that the sensor units are substantially heavier per length unit than the cable between them.
Abstract:
A communication housing for devices external to a solid marine seismic cable, especially for level control devices, comprises an upper housing half and a lower housing half, coupled together around the cable. The upper housing half includes a plurality of wells, for example three wells, each adapted to receive a communication coil. The lower housing half has no such wells. The communication coils are wound in series to reinforce the signal strength of the communication signal. The communication coils are preferably formed to two segments, joined together at a flexible joint to reduce the likelihood of breakage of the coil core as the cable is wound onto a take up reel aboard the exploration vessel.
Abstract:
A seismic streamer comprises a substantially solid core having many of the main components of the streamer, namely hydrophones, electronics modules for digitising the outputs of the hydrophones, the main optical and electrical conductor bundles and Keviar strength members, embedded in it. The core also contains a large number of foam buoyancy elements. An outer skin surrounds the core, defining an annular gap around the core, and this annular gap is filled with open-celled polyurethane foam saturated with kerosene. The capsules containing the hydrophones communicate with the annular gap around the core, so that the kerosene can enter the capsules, each of which contains an open-celled polyurethane foam sheath to cushion the hydrophone. In an alternative construction, made possible by using the buoyancy elements in the core to render the core approximately neutrally buoyant in water, the outer skin and the polyurethane foam are omitted, and the core is used on its own as a solid streamer.
Abstract:
An apparatus and method for improving the efficiency of marine cable tow operations. Indentations such as dimples in the cable exterior surface reduce frictional drag forces and reduce strumming of the cables as the cables are towed through the water. The size, configuration and orientation of the indentations can be selected to control the desired water flow parameters.
Abstract:
A connection system for connecting external devices to specified locations on a marine seismic streamer. Inner collars are clamped to the cable at specified locations along its length. Each inner collar forms a circular race encircling the cable. A cuff attached to an external device is in the form of a C-shaped cylindrical ring with a circular inner surface. A gap in the ring interrupts the inner surface. A throat is formed in the ring by the gap, which extends the full length of the cuff across the ends of the C. The spacing between the ends of the C across the throat defines the width of the gap. The width of the gap is slightly larger than the diameter of the cable so that the cuff can be slipped over the cable through the throat. The width of the gap is smaller than the diameter of the circular race so that, when the cuff is slid into position on the race, the cuff cannot be removed radially from the race. The inner surface of the cuff rides on the race to allow the cable to rotate inside the cuff. The race can include a circumferential groove for retaining a retractable pin extending from the external device to snap the device in place and a raised circumferential shoulder to further restrain the cuff and attached device from sliding along the cable.
Abstract:
A three part enclosure system protects a sensor package and its connection to a main seismic cable. The enclosure system further anchors the sensor package to the cable. The enclosure system includes a combination takeout and anchor, molded to the cable; an opposing anchor; and a substantially cylindrical enclosure body or protective cover, adapted to contain, locate, and protect the sensor package and pigtail wire connections.
Abstract:
A hydrophone streamer including a central member running substantially the length of the streamer with a strength member and a plurality of conductors has formed therein space adapted to receive a plurality of a spaced apart pairs of collars, a cylindrical chamber wall between each of the pairs of collars defining a chamber, and one or more hydrophones within the chamber. The chamber wall has one or more opening through it for the free passage of sea water into the chamber, thereby shielding the hydrophones from extraneous noise while exposing the hydrophones to a seismic signal conducted by the sea water surrounding the streamer.