摘要:
A calibration system for ccalibrating orientation parameters of a digital optoelectronic sensor system includes an attitude and position determining system arranged in a mobile carrier, such as an airplane or a satellite, for determining the orientation parameters in flight. An optoelectronic component emits light in a defined direction with respect to the mobile carrier. A planar optical detector is arranged relative to the optoelectronic device for detecting the reflection of radiation emitted from the optoelectronic device and reflected off of a reference module arranged on the ground. The orientation parameters of the reference module are known, wherein the offsets of the orientation parameters of the attitude and position determining system may be determined by evaluating the radiation emitted by the light-emitting component, reflected from the reference module and received by the planar detector.
摘要:
An actuator system may include a first actuator for being operated by a user, a second actuator for performing a movement of the user, and a transmission channel between the first actuator and the second actuator for transmitting the velocity and the force of the first actuator to the second actuator and vice versa. The actuator system may also include a controller, wherein the controller is configured such that, with the aid of the controller, the energy of the first actuator is adapted to be measured as a desired energy, wherein the transmission channel is configured for transmitting the desired energy to the second actuator and the controller is configured for controlling the damping of the second actuator as a function of the desired energy.
摘要:
A 3D input device, in particular a mobile 3D input device, has a housing and an input element arranged within the housing. The input element has at least a first side and a second side opposite the first side. The 3D input device has a sensor device. The input element is movable relative to the housing in six components. The sensor device detects the movements and/or the positions of the input element relative to the housing. The first side of the input element or the second side of the input element or the first side and the second side of the input element are together configured in such a way that a user can complete a movement of the input element along the six components via an action on the input element. A mobile device and a 3D remote-control each have at least one such 3D input device.
摘要:
A protective device for an effector of a manipulator includes a shell having a plurality of chambers, wherein the shell is flexurally slack and bounds a fillable and/or evacuable pressure space. The protective device further includes at least one first pulling means for pulling back the shell, and at least one actuator for applying a tensile force to the at least one first pulling means. A device for manipulating workpieces includes a robotic manipulator having an effector, and the protective device disposed proximate the effector.
摘要:
In order to suppress aeroelastic instabilities on a transonically operating aircraft comprising a pair of wing halves at which a transonic flow forms spatially limited supersonic flow regions that each, in a main flow direction of the flow, end in a compression shock, a boundary layer of the flow is temporarily thickened-up in at least one supersonic flow region at at least one of the two wing halves, when approaching a flight envelope of the aircraft with increasing flight Mach number of the aircraft. The boundary layer of the flow is thickened-up to such an extent that the compression shock at the end of the respective supersonic flow region at the present flight Mach number of the aircraft induces a separation of the boundary layer of the flow from the wing half.
摘要:
The invention relates to a method for impregnating at least one fibre bundle (11) with a high-viscosity plastics material (13), said method comprising the following steps: •—providing at least one fibre bundle (11) for impregnation, formed of a multiplicity of continuous fibres, and providing a plastics material (13), melted at a mandated operating temperature and of high viscosity, and •—impregnating the fibre bundle (11) with the plastics material (13), by guiding the fibre bundle for impregnation continuously through an impregnation cavity (12), filled with the melted plastics material (13), •—where during impregnation of the fibre bundle, the melted plastics material within the impregnation cavity is contacted with a surface (15) of at least one oscillation generator (14) in such a way that sonic energy is introduced by said oscillation generator into the melted high-viscosity plastics material in the impregnation cavity.
摘要:
The invention relates to a method for applying a material (30) to a fiber composite component within an application region (13) of the fiber composite component, the fiber composite component being produced from a fiber composite material having a fiber material (11) and a matrix material (12), the method comprising the following steps: —providing at least one monofilament woven fabric (20), in which a plurality of or all threads each consist of a single filament, —arranging the at least one monofilament woven fabric (20) on a fiber preform (10) in the application region (13), which fiber preform is formed from the fiber material (11) of the fiber composite material, —curing, in a common process step, the matrix material (12) of the fiber composite material, which matrix material embeds the fibers material (11) of the fiber preform (10), and a matrix material (12) embedding the monofilament woven fabric (20), thereafter the matrix material (12) of the fiber preform (10) and the matrix material (12) of the monofilament woven fabric (20) being at least partially cured, —tearing off the monofilament woven fabric (20) integrally bonded to the fiber preform (10), and —applying the material (30) in the application region (13) after the monofilament woven fabric (20) has been torn off.
摘要:
A 3D input device, in particular a mobile 3D input device, has a housing and an input element arranged within the housing. The input element has at least a first side and a second side opposite the first side. The 3D input device has a sensor device. The input element is movable relative to the housing in six components. The sensor device detects the movements and/or the positions of the input element relative to the housing. The first side of the input element or the second side of the input element or the first side and the second side of the input element are together configured in such a way that a user can complete a movement of the input element along the six components via an action on the input element. A mobile device and a 3D remote-control each have at least one such 3D input device.
摘要:
Method and system of calibrating a sensor system which comprises sensor A and sensor B. Sensor A has a transmitter TXA for emitting a signal STXA and a receiver RXA for receiving a signal SRXA, wherein RXA and TXA operate independently in a radar mode of sensor A. Sensor B has a transmitter TXB, a receiver RXB, and a unit D, which is used to connect TXB to RXB in a transponder mode of sensor B, with the result that a signal SRXB received by RXB is emitted again by TXB as a signal STXB. A gain Gcon,B between signal SRXB and signal STXB is predefined. In a radar mode of sensor B, TXB is not connected to RXB, with the result that TXB and RXB operate independently. Emitted signals may be radar, light, or acoustic signals. The method and system can calibrate radar systems, lidar systems, or sonar systems.
摘要:
The invention relates to a method and a device (1) for determining the leading edges (S1, S2) of two overlapping image captures of a surface (OF), comprising at least one camera (2) having a matrix-type sensor (6), having n lines (7), a position and location measuring system (3), an evaluation unit (4) and a storage means (5), wherein an elevation model (H) of the surface (OF) and a projection model (P) of the camera (2) are stored in the storage means (5), which the evaluation unit (4) can access, wherein the camera position (P1, P2) in the first and second image capture is determined by means of the position and location measuring system (3), wherein a horizontal mid-point (M) between the two camera positions (P1, P2) is determined and a projection of the mid-point (M) onto the surface (OF) is carried out, wherein a back projection onto the sensor (6) is carried out in the first and second camera position (P1, P2) by means of the projection model (P) for the point (MO) determined in the above-mentioned manner and a respective pixel is determined, wherein the respective line of the sensor (6) is determined, four solid angles (RW1-4) of the respective first and last pixel (Pix1-4) of the lines (7.Z1 M0, 7.Z2M0) are determined and their leading points (SP1-SP4) are determined with the elevation model (H), mid-points (M1, M2) are determined between the leading points and projected back into the sensors in the first and second position, associated lines are determined, wherein the smallest determined line (7.MIN1) is selected as the leading edge (S1) for the first camera position (P1) and the largest determined line (7.MAX2) is selected as the leading edge (S2) for the second camera position (P2).