摘要:
The present invention provides apparatus and methods for improving satellite navigation by assessing the dynamic state of a platform for a satellite navigation receiver and using this data to improve navigation models and satellite tracking algorithms. The dynamic state of the receiver platform may be assessed using only accelerometer data, and does not require inertial navigation system integration. The accelerometers may not need to be very accurate and may not need to be aligned and/or accurately calibrated. A method of accelerometer assisted satellite navigation may comprise: detecting a stationary condition of an accelerometer set; gross-calibrating the accelerometer set when in the stationary condition, wherein gross-calibrating includes determining a combined-bias of the accelerometer set; defining at least two acceleration levels using the combined-bias; collecting accelerometer data; categorizing the accelerometer data into one of the acceleration levels; and utilizing the categorized accelerometer data to enhance satellite navigation.
摘要:
The present invention provides systems and methods for downloading navigation data to a satellite receiver under weak signal conditions. In an embodiment, the receiver uses a tracking algorithm to estimate the Doppler frequency and rate of change of the Doppler frequency to compensate the phases of the I/Q samples from the received signal to reduce the effect of the Doppler frequency. In an embodiment, differential detection based data bit decoding is provided. In another embodiment, phase compensation based data bit decoding is provided, in which the phase of samples are rotated to compensate for phase error. In an embodiment, a multiple frame strategy is provided to increase signal-to-noise ratio (SNR) and improve sensitivity, in which similar placed samples in consecutive frames are coherently summed over the consecutive frames. In an embodiment, the samples are weighted to reduce the impact of noise in the multiple frame strategy.
摘要:
The present invention provides systems and methods for enabling a navigation signal receiver to perform both data assisted and non-data assisted integration to provide better integration during signal acquisition, reacquisition and tracking. In data assisted integration mode, a receiver uses known or predicted data bits to remove the modulated data bits of a received signal prior to integration. In non data assisted integration mode, when the data bits are not known or predictable, the receiver uses an optimal estimation or maximum likelihood algorithm to determine the polarities of the modulated data bits of the received signal. This may be done by determining which of various possible bit pattern yields the maximum integrated power. When the modulated data bits are not known or predictable over a limited range, the receiver carries out data assisted integration over the known or predictable data bits and additional non data assisted integration.
摘要:
The present invention discloses methods, apparatuses, and systems for eliminating auto- and cross-correlation in weak signal CDMA systems, such as GPS systems. The invention uses parallel data paths that allow standard correlation of signals in parallel with verification of the lock signal to determine whether the system has locked onto the proper signal within the scanned signal window. The invention can be made with multiple CPUs, a single CPU with dual input modes, on multiple IC chips, or as a single IC chip solution for small, low cost reception, downconversion, correlation, and verification systems.
摘要:
Flexible mounting devices for navigational/entertainment displays, especially for in-vehicle use, are described herein. In an embodiment, the flexible mounting device comprises a flexible gooseneck, a magnetic base magnetically attached to a front end of the gooseneck for holding a display, and a windshield suction attached to a back end of the gooseneck for providing windshield support from the rear by suctioning to the windshield of a vehicle. In another embodiment, the flexible mounting device comprises a flexible neck, which may be firmly attached to the dashboard of a vehicle with a sticky gel pad. The mounting device also comprises a counter weight attached to a back end of the flexible neck. The display is fixed to a front end of the flexible neck such that the display protrudes beyond the dashboard. The counter weight at the back end of the flexible neck counter balances the weight of the display at the front end, and thereby helps to provide a stable support.
摘要:
Methods for calibrating an accelerometer without needing to use external assistance signals, such as GNSS signals. The invention is applicable to accelerometers generally—in both GPS navigation devices and other devices. A method of calibrating an accelerometer, the accelerometer having a bias, comprises: rotating the accelerometer, wherein the orientation of the axis of the accelerometer changes with respect to the local gravity vector; collecting accelerometer measurements as the accelerometer is moving; and calculating the bias and/or scale factor; wherein the accelerometer measurements are primarily due to local gravity. Furthermore, some embodiments of the present invention include a self-calibration process—a process that does not engage the user's attention. For example, in a self-calibration process for an accelerometer in a cell phone the moving step may be the movement of the phone out of a user's pocket to hold it up to view the screen.
摘要:
The present invention provides an elevation based adaptive scheme for setting power threshold in the acquisition of navigational satellite signals. In an embodiment, the elevation based adaptive scheme uses a different series of power thresholds to acquire signals from satellites at different elevation angles instead of using one threshold for all satellites, as is done in the prior art. This scheme exploits the fact that the received signal power level depends on the elevation angle of the satellite at the receiver. This scheme also takes into account the antenna gain variation without having to measure the antenna gain variation.
摘要:
Provided herein is multi-function platform comprising a plurality of devices and a large memory that is external to the devices and shared among the devices. In an embodiment, a Direct Memory Access (DMA) controller is provided for each device to efficiently transfer data between the device and the shared memory. More than one DMA may be provided for a device. For example, separate DMAs may be provided for different components of a device that perform different subfunctions enabling efficient transfer of data between the different components of the device and the shared memory. In another embodiment, each device comprises a local embedded memory and is provided with a DMA for transferring data between the local memory and the shared memory. Examples of devices that can be included in the platform include a GNSS receiver, a audio player, a video player, a wireless communication device, a routing device, or the like.
摘要:
Fast Fourier Transform (FFT) based Phase Lock Loops (PLLs) are provided for use in navigational signal receivers. In an embodiment, a navigation receiver correlates a received navigational signal with a locally generated signal into correlation samples, e.g., one-millisecond correlation samples. The navigation receiver includes a FFT based PLL that corrects phase shifts in the correlation samples due to the Doppler frequency by considering both the Doppler frequency and its rate of change, which are obtained from a FFT computation with interpolation. The phase corrected correlation samples are then integrated over a length of a navigation data bit, e.g., 20 milliseconds, to determine the sign of the data bit of the received signal. In another embodiment, a soft decision feedback technique involving integration extending over the present data bit and several prior data bits is used to determine the sign of a present data bit of the received signal.
摘要:
Provided herein are systems and methods for achieving long coherent integration in a navigational receiver to improve the sensitivity of the receiver and enable the receiver to acquire, reacquire and track signals under very weak signal conditions. In an embodiment, phase compensation is computed based on estimated Doppler frequency, rate of change of the Doppler frequency with time, and second order rate of change of the Doppler frequency. The Doppler frequency may be computed from an orbital model or ephemeris. This phase compensation is used to compensate samples of the input signal for changes in the phase due to the Doppler frequency. Frequency components of the phase-compensated samples are then computed using a frequency analysis such as a Fast Fourier Transform (FFT). The maximum frequency component is taken as an error frequency and used to compensate the samples of the input signal for residual frequency error.