Abstract:
A network device is configured to: detect a virtual network that is unable to relay communication as a failed virtual network; identify, as a failed virtual network identifier, a virtual network identifier assigned to a combination of the failed virtual network and a physical port through which communication of the failed virtual network pass, based on mapping information; identify a first virtual tunnel end point that relays communication of the failed virtual network; identify a second virtual tunnel end point of another network device that communicates with the first virtual tunnel end point based on the tunnel information; and send, to the second virtual tunnel end point, a clear request including the failed virtual network identifier and an IP address of the first virtual tunnel end point, and the clear request being used for clearing a MAC address used in Layer 2 protocol.
Abstract:
A virtual tunnel endpoint that makes a communication of a specific tenant is separated from virtual tunnel endpoints that make communications of the other tenants. A forwarding route from the virtual tunnel endpoint that makes a communication of the specific tenant is separated from a forwarding route from the virtual tunnel endpoints that make communications of the other tenants. Accordingly, a communication of the specific tenant is forwarded with priority.
Abstract:
Network switching arrangements including: setting an operation mode of a target switching block to a operation mode that is different from an operation mode of a first switching block while the first switching block is handling a switching process, the target switching block being one switching block selected from second switching blocks; performing a switchover process including starting the switching process using the target switching block instead of the first switching block, after completion of setting the operation mode of the target switching block; and copying the switching information held by the first switching block to the target switching block, prior to starting the switching process using the target switching block, after completion of setting the operation mode of the target switching block.
Abstract:
A system manager sets a port connected to a specific device (for example, a router device) among a plurality of ports of a switch device as a reliable port. If a packet is received in the reliable port, the switch device manages an IP address and a MAC address of the router device by a reliable port information table. When a packet is received from a port not set as the reliable port, the switch device refers to the reliable port information table. At this time, when the received packet is an address resolution packet having impersonated a router device, the switch device discards the packet without transmitting the packet, thereby preventing a cyber attack on a terminal.
Abstract:
The communication apparatus includes: a first circuit board unit including, on a front surface of the communication apparatus, a port for transmitting and receiving data to and from the network; a second circuit board unit including a plurality of first connectors connected to at least one of the first circuit board units, a second connector being capable of accommodating at least a bandwidth accommodated by the plurality of first circuit board units, and being connected, via a cable, to the other communication apparatus of a standby system; and a cross bar switch for selectively outputting data to the first connectors or the second connector as a data output destination, and a ventilation control unit for controlling a flow of air flowing between each of the first circuit board unit and the second circuit board unit, and outside of the communication apparatus.
Abstract:
To detect a failure in each processor core appropriately. It is provided a network apparatus for transferring a packet, comprising: a control unit; and a network processor including a plurality of processor cores, each configured to perform a process of transferring a packet input over a network. The control unit being configured to: transmit a packet to the network processor; acquire a packet processing status of each of the plurality of processor cores; and monitor a status of the each of the plurality of processor cores based on the acquired packet processing status.
Abstract:
There is a need for a network interface supporting various line speeds to have a smaller size and provide more flexible accommodation than the related art. In the present invention, provided is a communication device including a transfer processing unit which has four connectors capable of coupling with network interface units to be accommodated in one slot, and a packet processing circuit configured to process a packet input from the network interface via any one of the connectors and output the packet toward the network interface unit to be coupled with the connector, and a path control unit configured to manage a path between the packet processing circuit and the connector.
Abstract:
A first communication apparatus to be coupled to a second communication apparatus and a third communication apparatus via a ring network, including: a first port to coupled to the ring network; and a second port to coupled to the ring network; wherein the first port and the second port is set to receive a control frame from the second communication apparatus and the third communication apparatus, and either the first port or the second port is set to be disabled to relay a user frame.
Abstract:
A system manager sets a port connected to a specific device (for example, a router device) among a plurality of ports of a switch device as a reliable port. If a packet is received in the reliable port, the switch device manages an IP address and a MAC address of the router device by a reliable port information table. When a packet is received from a port not set as the reliable port, the switch device refers to the reliable port information table. At this time, when the received packet is an address resolution packet having impersonated a router device, the switch device discards the packet without transmitting the packet, thereby preventing a cyber attack on a terminal.
Abstract:
A simple configuration for cooling comprises a front-back air supply and exhaust system. A first circuit board is located in front of a relay circuit board. A cooling unit and a second circuit board are placed behind the relay circuit board in a chassis. A first air passage allows intake air through an intake hole in a front side of the first circuit board unit to pass through the first circuit board and then through an opening in the relay circuit board to the cooling unit. A second air passage allows intake air through an intake hole in a front face of the chassis to pass through a lateral side of the first circuit board and then through a vent hole in a partition provided at the lateral side of the first circuit board. The second circuit board is placed in the second air passage.