Abstract:
Systems and methods for performing single-end line testing (SELT) are described. At least one embodiment includes a method for SELT to determine loop characteristics for a loop. The method for performing SELT comprises generating a test signal through a loop to be tested and receiving an echo response. The method further comprises subtracting predetermined near end echo response from the received echo to derive a far end echo response, performing time-dependent scaling on the far end echo response to compensate for loop attenuation, comparing the time-scaled far end echo response to a set of predefined templates, and providing an estimate of loop characteristics by identifying a matching template within the set of predefined templates, wherein the matching template contains information relating to loop characteristics comprising loop length and loop termination.
Abstract:
Various systems and methods are described for performing fractionally spaced time domain equalization (TEQ). One embodiment is a method implemented in a communication system for training a fractionally spaced time domain equalizer (TEQ). The method comprises performing an initialization phase, averaging a received signal in the system to reduce effects of noise in a channel, determining a channel estimate, and aligning an ideal reference signal with the received signal. The method further comprises updating a target response filter according to a non-integer multiple of a base sampling rate, determining an adaptation error based on useful information both inside and outside a Nyquist band of the TEQ, and updating the TEQ according to the adaptation error.
Abstract:
Systems and methods for partial self-FEXT (far-end crosstalk) are described. One method, among others, comprises determining one or more instantaneous characteristics of an input signal, wherein the one or more instantaneous characteristics comprise one or more of amplitude of the input signal and an energy level of the input signal. The method further comprises selecting one or more disturbers to cancel according to the one or more instantaneous characteristics, wherein selecting one or more disturbers is performed on a per-DMT (discrete multi-tone) symbol basis.
Abstract:
Disclosed are various embodiments for determining a state of loop termination. One embodiment comprises receiving an un-calibrated echo signal for the loop under test using frequency domain reflectometry single-ended line testing (FDR-SELT) and determining the state of loop termination based on phase of the un-calibrated echo signal. The step of determining the state of loop termination comprises determining whether the loop is terminated by an open termination or a short termination by correlating the phase of the echo signal with an expected phase of the echo signal derived from measurements taken at the same loop length for open and short terminations. For other embodiments, the amplitude of the un-calibrated echo signal is analyzed to determine whether the loop is terminated by a matched-impedance termination.
Abstract:
The memory storage, transmission and processing demands of a vectored DSL system are reduced by sampling a subset of DSL tones in the DSL tone range used in the vectored system. This data is smoothed (denoised) to further reduce the data's size, sacrificing some fidelity or precision as a result. Finally, lossless entropy coding or the like is performed to encode the FEXT cancellation data for storage and use. The resulting data is less likely to cause transmission bottlenecks in the vectored system, can be stored and used more efficiently for both on-chip and off-chip vectoring implementations, and can be readily updated in various ways.
Abstract:
One embodiment is a method for precoding data for transmission in a discrete multi-tone (DMT) system to cancel self-induced far end crosstalk (self-FEXT). The method comprises learning, by the system, characteristics associated with a plurality of N users within a digital subscriber line (xDSL) system to determine an initial off-diagonal multiple input multiple output (MIMO) precoder (ODMP) for a given tone frequency and converging towards an ODMP from the initial ODMP to cancel self-FEXT for the plurality of N users, wherein the ODMP is represented as a zero diagonal matrix containing only off-diagonal terms.
Abstract:
Systems and methods for reducing the peak-to-average power ratio (PAR) at the transmitter can reduce the dynamic range required in various analog components. PAR can be reduced by applying a time-domain compensation signal in the oversampled regime, using tones reserved for PAR reduction. A set of vectors corresponding to PAR tones is generated by processing out-of-phase symbols for each PAR tone to form a span matrix. The span matrix is used to find a best fit of a desired target signal to a time-domain compensation signal comprising only PAR tones.
Abstract:
Systems and methods for off-diagonal MIMO precoders are described. At least one embodiment includes a method for precoding data for transmission in a discrete multi-tone (DMT) xDSL system to cancel self-induced far end crosstalk (self-FEXT) comprising: learning characteristics associated with a plurality of N users within the xDSL system to determine an initial off-diagonal multiple input multiple output (MIMO) precoder (ODMP) for a given tone frequency; and converging towards an optimum ODMP from the initial ODMP in order to cancel downstream self-FEXT for the plurality of N users, wherein the ODMP is represented as a zero diagonal matrix with only off-diagonal terms, and wherein the converging towards the optimum ODMP comprises: maximizing the channel capacity for the plurality of N users for the given tone frequency; and minimizing an increase in transmit power of the xDSL system relative to an original transmit power where a precoder is not active.
Abstract:
Systems and methods are described for selecting tones for far-end crosstalk (FEXT) mitigation. In particular, systems and methods are described for performing far-end crosstalk (FEXT) mitigation within a digital subscriber line (xDSL) system. One embodiment is a method that comprises determining a first set of function values relating to a per-tone signal-to-noise ratio (SNR) for a user among a plurality of users for a number of tones, wherein the number of tones is less than or equal to a total number of tones available for transmission. The method further comprises estimating coefficients for performing FEXT mitigation for the number of tones, performing FEXT mitigation on the number of tones based on the estimated coefficients, and performing FEXT mitigation on a selected group of tones from among the number of tones, wherein the selected group of tones is less than or equal to the number tones.
Abstract:
Impulse noise from nearby or intense electrical sources can disrupt communications over digital subscriber lines (DSL). The characterization of the nature, timing and length of impulse noise sources present on a DSL loop is a critical first step in mitigating the effect of impulse noise on DSL communications. DSL standards provide histograms for impulse length and inter-arrival time of impulses. These histograms can be used to derive the nature, maximum frequency and other statistics related to impulse noise on a DSL line.