Abstract:
The invention provides a method of verifiable generation of public keys. According to the method, a self-signed signature is first generated and then used as input to the generation of a pair of private and public keys. Verification of the signature proves that the keys are generated from a key generation process utilizing the signature. A certification authority can validate and verify a public key generated from a verifiable key generation process.
Abstract:
A method is presented to compute square roots of finite field elements from the prime finite field of characteristic p over which points lie on a defined elliptic curve. Specifically, while performing point decompression of points that lie on a standardized elliptic curve over a prime finite field of characteristic 2224−296+1, the present method utilizes short Lucas sub-sequences to optimize the implementation of a modified version of Mueller's square root algorithm, to find the square root modulo of a prime number. The resulting method is at least twice as fast as standard methods employed for square root computations performed on elliptic curves.
Abstract:
In some aspects of what is described here, a first wireless device detects proximity of a second wireless device (e.g., by a Near Field Communication (NFC) interface or another type of interface). Based on detecting proximity of the second wireless device, the first wireless device generates a recommendation request from information received from the second wireless device. The first wireless device sends the recommendation request to a trusted authority and receives a response. The response includes the trusted authority's recommendation whether to trust the second wireless device. The first wireless device can determine whether to trust the second wireless device based on the recommendation.
Abstract:
An elliptic curve random number generator avoids escrow keys by choosing a point Q on the elliptic curve as verifiably random. An arbitrary string is chosen and a hash of that string computed. The hash is then converted to a field element of the desired field, the field element regarded as the x-coordinate of a point Q on the elliptic curve and the x-coordinate is tested for validity on the desired elliptic curve. If valid, the x-coordinate is decompressed to the point Q, wherein the choice of which is the two points is also derived from the hash value. Intentional use of escrow keys can provide for back up functionality. The relationship between P and Q is used as an escrow key and stored by for a security domain. The administrator logs the output of the generator to reconstruct the random number with the escrow key.
Abstract:
A method is presented for secure communication, the method including generating a signature using a private key, a nonce, and at least one of an identifier and a key component; and transmitting the signature, the nonce, a security parameter, and the at least one of the identifier and the key component, wherein the security parameter associates a user identity with a public key, the public key being associated with the private key.
Abstract:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n)+wQ=O with z and w of reduced bit length This is beneficial in digital signature verification where increased verification can be attained.
Abstract translation:通过将至少一个操作数布置成具有相对较小的比特长度来提供有限域中的组操作的组合的加速计算。 在椭圆曲线组中,验证表示点R的值对应于两个其他点uG和vG的和是通过导出减小位长度的整数w,z以及v = w / z获得的。 然后,验证等式R = uG + vQ可以被计算为-zR +(uz mod n)+ wQ = 0,其中z和w为减少的比特长度这对于可以获得增加的验证的数字签名验证是有益的。
Abstract:
Systems, methods, software, and combinations thereof for evaluating entropy in a cryptography system are described. In some aspects, sample values are produced by an entropy source system. A typicality can be determined for each of the sample values. A grading is determined for preselected distributions based on the typicalities of the sample values. A subset of the preselected distributions are selected based on the gradings. An entropy of the entropy source system is calculated based on the subset of the plurality of distributions.
Abstract:
A client application, when executed by a processor, is operative to create a HyperText Transfer Protocol (HTTP) request containing a target header that includes a confidential value. The HTTP request is to be sent over a Secure Sockets Layer (SSL) 3.0 connection or a Transport Layer Security (TLS) 1.0 connection to a web server. The client application implements at its HTTP layer a countermeasure to a blockwise chosen-boundary attack. The client application generates an additional header having a header name that is not recognizable by the web server and inserts the additional header into the HTTP request ahead of the target header, thus creating a modified HTTP request. The modified HTTP request is to be sent, instead of the unmodified HTTP request, over the SSL 3.0 connection or the TLS 1.0 connection to the web server.
Abstract:
The invention relates to a method of generating an implicit certificate and a method of generating a private key from a public key. The method involves a method generating an implicit certificate in three phases. The public key may be an entity's identity or derived from an entity's identify. Only the owner of the public key possesses complete information to generate the corresponding private key. No authority is required to nor able to generate an entity's private key.
Abstract:
There is provided a method for secure communications. The method comprises obtaining a broadcast message, computing a signature for said broadcast message using a private key, and sending a transmission to a communication device. The private key is associated with a certificate and the transmission comprises the signature.